Advertisement

On the Identification of \(\alpha \)-Asynchronous Cellular Automata in the Case of Partial Observations with Spatially Separated Gaps

  • Witold Bołt
  • Barbara Wolnik
  • Jan M. Baetens
  • Bernard De Baets
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 634)

Abstract

In this paper we present a statistical method, based on frequencies, for identifying so-called \(\alpha \)-asynchronous Cellular Automata from partial observations, i.e. pre-recorded configurations of the system with some cells having an unknown (missing) state. The presented method, in addition to finding the unknown Cellular Automaton, is able to unveil the missing state values with high accuracy.

Keywords

Asynchronous cellular automata Identification Parameter estimation 

Notes

Acknowledgments

Witold Bołt is supported by the Foundation for Polish Science under International PhD Projects in Intelligent Computing. This project is financed by the European Union within the Innovative Economy Operational Program 2007–2013 and the European Regional Development Fund.

References

  1. 1.
    Adamatzky, A.: Identification of Cellular Automata. Taylor & Francis Group, London (1994)MATHGoogle Scholar
  2. 2.
    Al-Kheder, S., Wang, J., Shan, J.: Cellular automata urban growth model calibration with genetic algorithms. In: Urban Remote Sensing Joint Event, pp. 1–5. IEEE Press (2007)Google Scholar
  3. 3.
    Andre, D., Bennett, III, F.H., Koza, J.R.: Discovery by genetic programming of a cellular automata rule that is better than any known rule for the majority classification problem. In: Proceedings of the 1st Annual Conference on Genetic Programming, pp. 3–11. MIT Press, Cambridge (1996)Google Scholar
  4. 4.
    Baetens, J.M., Van der Weeën, P., De Baets, B.: Effect of asynchronous updating on the stability of cellular automata. Chaos Solitons Fractals 45, 383–394 (2012)CrossRefMATHGoogle Scholar
  5. 5.
    Bandini, S., Manzoni, S., Vanneschi, L.: Evolving robust cellular automata rules with genetic programming. In: Adamatzky, A., Alonso-Sanz, R., Lawniczak, A.T., Martínez, G.J., Morita, K., Worsch, T. (eds.) Automata, pp. 542–556. Luniver Press, Frome (2008)Google Scholar
  6. 6.
    Billings, S.A., Yang, Y.: Identification of probabilistic cellular automata. IEEE Trans. Syst. Man Cybern. Part B Cybern. 33, 225–236 (2003)CrossRefGoogle Scholar
  7. 7.
    Bołt, W., Baetens, J.M., De Baets, B.: Identifying CAs with evolutionary algorithms. In: Proceedings of the 19th International Workshop on Cellular Automata and Discrete Complex Systems (AUTOMATA 2013) - Exploratory Papers, pp. 11–20 (2013)Google Scholar
  8. 8.
    Bołt, W., Baetens, J.M., De Baets, B.: An evolutionary approach to the identification of cellular automata based on partial observations. In: Proceedings of the 2015 Congress of Evolutionary Computation (CEC 2015). IEEE Press (2015)Google Scholar
  9. 9.
    Brown, L.D., Cai, T.T., DasGupta, A.: Interval estimation for a binomial proportion. Stat. Sci. 16(2), 101–133 (2001)MathSciNetMATHGoogle Scholar
  10. 10.
    Bull, L., Adamatzky, A.: A learning classifier system approach to the identification of cellular automata. J. Cell. Autom. 2, 21–38 (2007)MathSciNetMATHGoogle Scholar
  11. 11.
    Bäck, T., Breukelaar, R., Willmes, L.: Inverse design of cellular automata by genetic algorithms: an unconventional programming paradigm. In: Banâtre, J.P., Fradet, P., Giavitto, J.L., Michel, O. (eds.) Unconventional Programming Paradigms. Lecture Notes in Computer Science, vol. 3566, pp. 161–172. Springer, Berlin (2005)CrossRefGoogle Scholar
  12. 12.
    Das, D.: A survey on cellular automata and its applications. In: Krishna, P., Babu, M., Ariwa, E. (eds.) Global Trends in Computing and Communication Systems, Communications in Computer and Information Science, vol. 269, pp. 753–762. Springer, Berlin (2012)Google Scholar
  13. 13.
    Fatès, N.: A guided tour of asynchronous cellular automata. In: Kari, J., Kutrib, M., Malcher, A. (eds.) Cellular Automata and Discrete Complex Systems. Lecture Notes in Computer Science, vol. 8155, pp. 15–30. Springer, Berlin (2013)CrossRefGoogle Scholar
  14. 14.
    Fatès, N., Morvan, M.: An experimental study of robustness to asynchronism for elementary cellular automata. Complex Syst. 16, 1–27 (2005)MathSciNetMATHGoogle Scholar
  15. 15.
    Ferreira, C.: Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence, Studies in Computational Intelligence, vol. 21. Springer, Berlin (2006)MATHGoogle Scholar
  16. 16.
    Liu, X., Li, X., Liu, L., He, J., Ai, B.: A bottom-up approach to discover transition rules of cellular automata using ant intelligence. Int. J. Geogr. Inf. Sci. 22, 1247–1269 (2008)CrossRefGoogle Scholar
  17. 17.
    Maeda, K., Sakama, C.: Identifying cellular automata rules. J. Cell. Autom. 2, 1–20 (2007)MathSciNetMATHGoogle Scholar
  18. 18.
    Mitchell, M., Crutchfield, J.P., Das, R.: Evolving cellular automata with genetic algorithms: a review of recent work. In: Proceedings of the First International Conference on Evolutionary Computation and its Applications (EvCA’96) (1996)Google Scholar
  19. 19.
    Richards, F.C., Meyer, T.P., Packard, N.H.: Extracting cellular automaton rules directly from experimental data. Phys. D: Nonlinear Phenom. 45, 189–202 (1990)CrossRefMATHGoogle Scholar
  20. 20.
    Rosin, P.L.: Image processing using 3-state cellular automata. Comput. Vis. Image Underst. 114, 790–802 (2010)CrossRefGoogle Scholar
  21. 21.
    Sapin, E., Bull, L., Adamatzky, A.: Genetic approaches to search for computing patterns in cellular automata. Comput. Intell. Mag. 4, 20–28 (2009)CrossRefGoogle Scholar
  22. 22.
    Sapin, E., Bailleux, O., Chabrier, J.J.: Research of a cellular automaton simulating logic gates by evolutionary algorithms. In: Proceedings of the 6th European Conference on Genetic Programming, EuroGP’03, pp. 414–423. Springer, Berlin (2003)Google Scholar
  23. 23.
    Schönfisch, B., de Roos, A.: Synchronous and asynchronous updating in cellular automata. Biosyst. 51, 123–143 (1999)CrossRefGoogle Scholar
  24. 24.
    Sun, X., Rosin, P.L., Martin, R.R.: Fast rule identification and neighborhood selection for cellular automata. IEEE Trans. Syst. Man Cybern. Part B: Cybern 41, 749–760 (2011)CrossRefGoogle Scholar
  25. 25.
    Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys. 55, 601–644 (1983)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Yang, Y., Billings, S.A.: Neighborhood detection and rule selection from cellular automata patterns. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 30, 840–847 (2000)CrossRefGoogle Scholar
  27. 27.
    Yang, Y., Billings, S.A.: Extracting Boolean rules from CA patterns. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 30, 573–580 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Witold Bołt
    • 1
    • 2
  • Barbara Wolnik
    • 3
  • Jan M. Baetens
    • 2
  • Bernard De Baets
    • 2
  1. 1.Systems Research Institute, Polish Academy of SciencesWarsawPoland
  2. 2.KERMIT, Department of Mathematical Modelling, Statistics and BioinformaticsGhent UniversityGentBelgium
  3. 3.Institute of Mathematics, University of GdańskGdańskPoland

Personalised recommendations