Skip to main content

Abstract

Interest in humanoid robots has increased significantly in recent years. Improved core technologies have led to the construction of such systems becoming increasingly feasible for more reasonable costs. As a result, various research laboratories and other organisations have developed custom humanoid systems (e.g. Sakagami et al. 2002; Sandini et al. 2007; Elumotion 2010; Guizzo 2010; Park et al. 2006; Kaneko et al. 2008; Willow Garage 2009; Nelson et al. 2012; Dynamics 2010). Such is the progression of the core technologies (e.g. actuators, power supplies, sensors and processors) that fully programmable and reconfigurable miniature humanoid robots are commercially available within the budget of at-home hobbyists (Hitec 2010; Robotis 2010). High-profile international events such as the DARPA Robotics Challenge (DARPA 2015; Guizzo and Ackerman 2015), and competitions held at robotics conferences, provide an illustration of the complexity and diversity of cutting-edge humanoid robotics research at the present moment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arbib M, Metta G, van der Smagt PP (2008) Neurorobotics: from vision to action. In: Siciliano B, Khatib O (eds) Springer handbook of robotics. Springer, Berlin, pp 1453–1480

    Chapter  Google Scholar 

  • Bicchi A, Peshkin M, Colgate J (2008) Safety for physical human-robot interaction. In: Siciliano B, Khatib O (eds) Springer handbook of robotics. Springer, Berlin, pp 1335–1348

    Chapter  Google Scholar 

  • Bluethmann W, Ambrose R, Diftler M, Askew S, Huber E, Goza M, Rehnmark F, Lovchik C, Magruder D (2003) Robonaut: a robot designed to work with humans in space. Auton Robots 14(2):179–197

    Article  MATH  Google Scholar 

  • Breazeal C (2004) Social interactions in HRI: the robot view. IEEE Trans Syst Man Cybern Part C: Appl Rev 34(2):181–186. doi:10.1109/TSMCC.2004.826268

    Article  Google Scholar 

  • DARPA (2015) The robotics challenge. http://www.theroboticschallenge.org/. Accessed 05 Sept 15

  • De Sapio V, Warren J, Khatib O, Delp S (2005) Simulating the task-level control of human motion: a methodology and framework for implementation. Visual Comput 21(5):289–302

    Article  Google Scholar 

  • De Sapio V, Warren J, Khatib O (2006) Predicting reaching postures using a kinematically constrained shoulder model. Adv Robot Kinemat 3:209–218

    Article  MATH  Google Scholar 

  • Dynamics B (2010) Atlas: the agile anthropomorphic robot. [Online] http://www.bostondynamics.com/robot_Atlas.html. Accessed 23 Sept 15

  • Elumotion (2010) Elumotion website. http://www.elumotion.com/. Accessed 04 Oct 10

  • European Committee for Standardization (1992) CEN EN 775 – Manipulating Industrial Robots – Safety; (ISO 10218:1992 Modified)

    Google Scholar 

  • Farah M, Rabinowitz C, Quinn G, Liu G (2000) Early commitment of neural substrates for face recognition. Cogn Neuropsychol 17(1):117–123

    Article  Google Scholar 

  • Guizzo E (2010) Iran’s humanoid robot Surena 2 walks, stands on one leg – IEEE Spectrum. http://spectrum.ieee.org/automaton/robotics/humanoids/iran-humanoid-robot-surena-2-walks-stands-on-one-leg

  • Guizzo E, Ackerman E (2015) The hard lessons of DARPA’s robotics challenge [News]. IEEE Spectr 52(8):11–13

    Article  Google Scholar 

  • Health and Safety Executive (2000) HSG43 industrial robot safety: your guide to the safeguarding of industrial robots. HSE Books, Sudbury

    Google Scholar 

  • Hersch M, Billard A (2006) A model for imitating human reaching movements. In: Proceedings of the 1st ACM SIGCHI/SIGART conference on human-robot interaction. ACM, New York, p 342

    Google Scholar 

  • Hitec (2010) Robonova official website. http://www.robonova.com/. Accessed 23 Oct 15

  • International Organization for Standards (2012) ISO 8373:2012 – Robots and robotic devices – Vocabulary

    Google Scholar 

  • Kaneko K, Harada K, Kanehiro F, Miyamori G, Akachi K (2008) Humanoid robot HRP-3. In: 2008 IEEE/RSJ international conference on intelligent robots and systems (IROS 2008). IEEE, Hamburg, pp 2471–2478

    Chapter  Google Scholar 

  • Kemp C, Fitzpatrick P, Hirukawa H, Yokoi K, Harada K, Matsumoto Y (2008) Humanoids. In: Siciliano B, Khatib O (eds) Springer handbook of robotics. Springer, Berlin/Heidelberg, pp 1307–1333

    Chapter  Google Scholar 

  • Khan S, Herrmann G, Pipe T, Melhuish C, Spiers A (2010) Safe adaptive compliance control of a humanoid robotic arm with anti-windup compensation and posture control. Int J Soc Robot 2(3):305–319

    Article  Google Scholar 

  • Khan SG, Herrmann G, Lenz A, Al Grafi M, Pipe AG, Melhuish CR (2014) Compliance control and human-robot interaction: Part (ii) – experimental examples. Int J Humanoid Robot 11(3). doi:10.1142/S0219843614300025

    Google Scholar 

  • Lacquaniti F, Soechting J (1982) Coordination of arm and wrist motion during a reaching task. J Neurosci 2(4):399–408

    Google Scholar 

  • Macnab R (1999) The bacterial flagellum: reversible rotary propellor and type (iii) export apparatus. J Bacteriol 181(23):7149

    Google Scholar 

  • Matsui D, Minato T, MacDorman K, Ishiguro H (2005) Generating natural motion in an android by mapping human motion. In: 2005 IEEE/RSJ international conference on intelligent robots and systems, 2005 (IROS 2005). IEEE, Edmonton, pp 3301–3308

    Google Scholar 

  • Metta G, Sandini G, Vernon D, Natale L, Nori F (2008) The iCub humanoid robot: an open platform for research in embodied cognition. In: Proceedings of the 8th workshop on performance metrics for intelligent systems. ACM, New York, pp 50–56

    Chapter  Google Scholar 

  • Minato T, Shimada M, Ishiguro H, Itakura S (2004) Development of an android robot for studying human-robot interaction. In: Orchard B, Yang C, Ali M (eds) Innovations in applied artificial intelligence. Lecture notes in computer science, vol 3029. Springer, Berlin/New York, pp 424–434

    Chapter  Google Scholar 

  • Nagatani K, Kiribayashi S, Okada Y, Otake K, Yoshida K, Tadokoro S, Nishimura T, Yoshida T, Koyanagi E, Fukushima M et al (2013) Emergency response to the nuclear accident at the fukushima daiichi nuclear power plants using mobile rescue robots. J Field Robot 30(1):44–63

    Article  Google Scholar 

  • Nelson G, Saunders A, Neville N, Swilling B, Bondaryk J, Billings D, Lee C, Playter R, Raibert M (2012) Petman: a humanoid robot for testing chemical protective clothing. Robot Soc Jpn 30(4):372–377

    Article  Google Scholar 

  • Park I, Kim J, Lee J, Oh J (2006) Mechanical design of humanoid robot platform KHR-3 (KAIST humanoid robot 3: HUBO). In: 2005 5th IEEE-RAS international conference on humanoid robots. IEEE, Tsukuba, pp 321–326

    Google Scholar 

  • Robotis (2010) Bioloid official website. www.robotis.com/xe/bioloid_en. Accessed 23 Sept 15

  • Sakagami Y, Watanabe R, Aoyama C, Matsunaga S, Higaki N, Fujimura K (2002) The intelligent ASIMO: System overview and integration. In: 2002 IEEE/RSJ international conference on intelligent robots and systems, vol 3. IEEE, Lausanne, pp 2478–2483

    Chapter  Google Scholar 

  • Sandini G, Metta G, Vernon D (2007) The iCub cognitive humanoid robot: an open-system research platform for enactive cognition. In: Lungarella M, Iida F, Bongard J, Pfeifer R (eds) 50 years of artificial intelligence. Lecture notes in computer science, vol 4850. Springer, Berlin/Heidelberg, pp 358–369

    Chapter  Google Scholar 

  • Tellez R, Ferro F, Garcia S, Gomez E, Jorge E, Mora D, Pinyol D, Oliver J, Torres O, Velazquez J et al (2009) Reem-B: an autonomous lightweight human-size humanoid robot. In: 8th IEEE-RAS international conference on humanoid robots (Humanoids 2008). IEEE, Daejeon, pp 462–468

    Google Scholar 

  • Todorov E (2004) Optimality principles in sensorimotor control. Nat Neurosci 7(9):907–915

    Article  Google Scholar 

  • Willow Garage (2009) Overview of the PR2 robot. http://www.willowgarage.com/pages/pr2/overview. First Accessed 12 Jan 11

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Spiers, A., Khan, S.G., Herrmann, G. (2016). Introduction. In: Biologically Inspired Control of Humanoid Robot Arms. Springer, Cham. https://doi.org/10.1007/978-3-319-30160-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30160-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30158-7

  • Online ISBN: 978-3-319-30160-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics