Skip to main content

Shortest Reconfiguration of Sliding Tokens on a Caterpillar

  • Conference paper
WALCOM: Algorithms and Computation (WALCOM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9627))

Included in the following conference series:

Abstract

For given two independent sets \({\mathbf I}_b\) and \({\mathbf I}_r\) of a graph, the sliding token problem is to determine if there exists a sequence of independent sets which transforms \({\mathbf I}_b\) into \({\mathbf I}_r\) so that each independent set in the sequence results from the previous one by sliding exactly one token along an edge in the graph. The sliding token problem is one of the reconfiguration problems that attract the attention from the viewpoint of theoretical computer science. These problems tend to be PSPACE-complete in general, and some polynomial time algorithms are shown in restricted cases. Recently, the problems for finding a shortest reconfiguration sequence are investigated. For the 3SAT reconfiguration problem, a trichotomy for the complexity of finding the shortest sequence has been shown; it is in P, NP-complete, or PSPACE-complete in certain conditions. Even if it is polynomial time solvable to decide whether two instances are reconfigured with each other, it can be NP-complete to find a shortest sequence between them. We show nontrivial polynomial time algorithms for finding a shortest sequence between two independent sets for some graph classes. As far as the authors know, one of them is the first polynomial time algorithm for the shortest sliding token problem that requires detours of tokens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this paper, a bold \({\mathbf I}\) denotes an “independent set,” an italic I denotes an “interval,” and calligraphy \(\mathcal{I}\) denotes “a set of intervals.”.

References

  1. Bonsma, P., Kamiński, M., Wrochna, M.: Reconfiguring independent sets in claw-free graphs. In: Ravi, R., Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp. 86–97. Springer, Heidelberg (2014). arXiv:1403.0359

    Chapter  Google Scholar 

  2. Brandstädg, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM, Philadelphia (1999)

    Book  Google Scholar 

  3. Demaine, E.D., Demaine, M.L., Fox-Epstein, E., Hoang, D.A., Ito, T., Ono, H., Otachi, Y., Uehara, R., Yamada, T.: Linear-time algorithm for sliding tokens on trees. Theor. Comput. Sci. 600, 132–142 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Deng, X., Hell, P., Huang, J.: Linear-time representation algorithms for proper circular-arc graphs and proper interval graphs. SIAM J. Comput. 25, 390–403 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fox-Epstein, E., Hoang, D.A., Otachi, Y., Uehara, R.: Sliding token on bipartite permutation graphs. In: Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS, vol. 9472, pp. 237–247. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48971-0_21

    Chapter  Google Scholar 

  6. Gardner, M.: The hypnotic fascination of sliding-block puzzles. Sci. Am. 210, 122–130 (1964)

    Article  Google Scholar 

  7. Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The connectivity of Boolean satisfiability: computational and structural dichotomies. SIAM J. Computing 38, 2330–2355 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hearn, R.A., Demaine, E.D.: PSPACE-completeness of sliding-block puzzles and other problems through the nondeterministic constraint logic model of computation. Theor. Comput. Sci. 343, 72–96 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hearn, R.A., Demaine, E.D.: Games, Puzzles, and Computation. A K Peters, Natick (2009)

    MATH  Google Scholar 

  10. Ito, T., Demaine, E.D., Harvey, N.J.A., Papadimitriou, C.H., Sideri, M., Uehara, R., Uno, Y.: On the complexity of reconfiguration problems. Theor. Comput. Sci. 412, 1054–1065 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kamiński, M., Medvedev, P., Milanič, M.: Complexity of independent set reconfigurability problems. Theor. Comput. Sci. 439, 9–15 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Korte, N., Möhring, R.: An incremental linear-time algorithm for recognizing interval graphs. SIAM J. Computing 18, 68–81 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Makino, K., Tamaki, S., Yamamoto, M.: An exact algorithm for the Boolean connectivity problem for \(k\)-CNF. Theor. Comput. Sci. 412, 4613–4618 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mouawad, A.E., Nishimura, N., Pathak, V., Raman, V.: Shortest reconfiguration paths in the solution space of boolean formulas. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 985–996. Springer, Heidelberg (2015)

    Google Scholar 

  15. Mouawad, A.E., Nishimura, N., Raman, V., Simjour, N., Suzuki, A.: On the parameterized complexity of reconfiguration problems. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 281–294. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Mouawad, A.E., Nishimura, N., Raman, V., Wrochna, M.: Reconfiguration over tree decompositions. In: Cygan, M., Heggernes, P. (eds.) IPEC 2014. LNCS, vol. 8894, pp. 246–257. Springer, Heidelberg (2014)

    Google Scholar 

  17. Ratner, R., Warmuth, M.: Finding a shortest solution for the \(N\times N\)-extension of the 15-puzzle is intractable. J. Symb. Comp. 10, 111–137 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. Slocum, J.: The 15 Puzzle Book: How it Drove the World Crazy. Slocum Puzzle Foundation, Beverly Hills (2006)

    Google Scholar 

  19. Yamada, T., Uehara, R.: Shortest Reconfiguration of Sliding Tokens on a Caterpillar, 1 November 2015. arxiv:1511.00243

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryuhei Uehara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Yamada, T., Uehara, R. (2016). Shortest Reconfiguration of Sliding Tokens on a Caterpillar. In: Kaykobad, M., Petreschi, R. (eds) WALCOM: Algorithms and Computation. WALCOM 2016. Lecture Notes in Computer Science(), vol 9627. Springer, Cham. https://doi.org/10.1007/978-3-319-30139-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30139-6_19

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30138-9

  • Online ISBN: 978-3-319-30139-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics