Skip to main content

Reduced Order Models for Systems with Disparate Spatial and Temporal Scales

  • Conference paper
  • First Online:

Abstract

Simulations and parametric studies of large-scale models can be facilitated by high-fidelity reduced order models (ROMs). One of the methods to obtain these ROMs, which is of considerable current interest, is using linear subspaces obtained from spatiotemporal decompositions including proper orthogonal decomposition (POD) and smooth orthogonal decomposition (SOD). Previous studies showed that SOD has advantages over POD in obtaining a lower dimensional ROM. However, in many dynamical models, the data matrices used in multivariate analysis can be ill-conditioned. This leads to non-optimal results with POD, since it only aims to find the subspace on which the data projection has the maximal variance. Therefore, POD is likely to overlook small-variance state-variables.

A large-scale nonlinear system is used as the full-scale model of an ill-conditioned system, where some state variable have considerably smaller variations than others. Four different methods are applied to obtain ROMs. First, a conventional POD as well as SOD are applied to the whole state space data matrix of the model. Then, the position and velocity data of the full system are separated into two data matrices and POD and SOD are applied to them individually. Finally, the ROMs built based on these multivariate analysis are compared in terms of accuracy and stability. While separated POD-based ROM shows considerable improvement over the conventional POD ROM, SOD still provides lower-dimensional ROMs and it does not seem to benefit from the separated SOD reduction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Balajewicz, M., Amsallem, D., and Farhat, C.: Projection-based model reduction for contact problems. Int. J. Numer Meth Eng (2015).

    MATH  Google Scholar 

  2. Benner, P., Mehrmann, V., Sorensen, D.C.: Dimension Reduction of Large-Scale Systems, vol. 45. Springer, Berlin (2005)

    MATH  Google Scholar 

  3. Ilbeigi, S., Chelidze, D.: Model order reduction of nonlinear euler-bernoulli beam. In: Nonlinear Dynamics, vol. 1, pp. 377–385. Springer, Berlin (2016)

    Google Scholar 

  4. Antoulas, A.C., et al.: Model order reduction: Methods, concepts and properties. In: Coupled multiscale simulation and optimization in nanoelectronics, pp. 159–265. Springer, Berlin (2015)

    Google Scholar 

  5. Maier, D., Hager, C., Hetzler, H., Fillot, N., Vergne, P., Dureisseix, D., Seemann, W.: A nonlinear model order reduction approach to the elastohydrodynamic problem. Tribol. Int. 82, 484–492 (2015)

    Article  Google Scholar 

  6. Kudryavtsev, M., Rudnyi, E., Korvink, J., Hohlfeld, D., Bechtold, T.: Computationally efficient and stable order reduction methods for a large-scale model of mems piezoelectric energy harvester. Microelectron. Reliab. 55 (5), 747–757 (2015)

    Article  Google Scholar 

  7. Benner, P., Feng, L.: Model order reduction for coupled problems. Appl. Comput. Math. Int. J. 14 (1), 3–22 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Foias, C., Jolly, M., Kevrekidis, I., Sell, G., Titi, E.: On the computation of inertial manifolds. Phys. Lett. A 131 (7), 433–436 (1988)

    Article  MathSciNet  Google Scholar 

  9. Pesheck, E., Pierre, C., Shaw, S.: A new galerkin-based approach for accurate non-linear normal modes through invariant manifolds. J. Sound Vib. 249 (5), 971–993 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Feldmann, P., Freund, R.W.: Efficient linear circuit analysis by padé approximation via the lanczos process. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 14 (5), 639–649 (1995)

    Article  Google Scholar 

  11. Rahrovani, S., Vakilzadeh, M.K., Abrahamsson, T.: Modal dominancy analysis based on modal contribution to frequency response function \(\mathcal{H}2\)-norm. Mech. Syst. Signal Process. 48 (1), 218–231 (2014)

    Article  Google Scholar 

  12. Vakilzadeh, M.K., Rahrovani, S., Abrahamsson, T.: Modal reduction based on accurate input-output relation preservation. In: Topics in Modal Analysis, vol. 7, pp. 333–342. Springer, New York (2014)

    Google Scholar 

  13. Glover, K.: All optimal hankel-norm approximations of linear multivariable systems and their \(L,\infty \)-error bounds†. Int. J. Control. 39 (6), 1115–1193 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhou, H., Su, X., Song, Y.-D., Yan, Q.: Hankel-norm model reduction for delayed fuzzy systems. In: IEEE 2015 27th Chinese Control and Decision Conference (CCDC), pp. 964–968 (2015)

    Google Scholar 

  15. Phillips, J.R., Daniel, L., Silveira, L.M.: Guaranteed passive balancing transformations for model order reduction. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 22 (8), 1027–1041 (2003)

    Article  Google Scholar 

  16. Baur, U., Benner, P., Feng, L.: Model order reduction for linear and nonlinear systems: a system-theoretic perspective. Arch. Comput. Meth. Eng. 21 (4), 331–358 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kerschen, G., Golinval, J.-C., Vakakis, A.F., Bergman, L.A.: The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview. Nonlinear Dyn. 41 (1–3), 147–169 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rathinam, M., Petzold, L.R.: A new look at proper orthogonal decomposition. SIAM J. Numer. Anal. 41 (5), 1893–1925 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Willcox, K., Peraire, J.: Balanced model reduction via the proper orthogonal decomposition. AIAA J. 40 (11), 2323–2330 (2002)

    Article  Google Scholar 

  20. Benner, P., Breiten, T.: Two-sided projection methods for nonlinear model order reduction. SIAM J. Sci. Comput. 37 (2), B239–B260 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Georgiou, I.: Advanced proper orthogonal decomposition tools: using reduced order models to identify normal modes of vibration and slow invariant manifolds in the dynamics of planar nonlinear rods. Nonlinear Dyn. 41 (1–3), 69–110 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ghasemi, M., Yang, Y., Gildin, E., Efendiev, Y., Calo, V., et al.: Fast multiscale reservoir simulations using pod-deim model reduction. In: SPE Reservoir Simulation Symposium. Society of Petroleum Engineers, Richardson, TX (2015)

    Book  Google Scholar 

  23. Shaw, S., Pierre, C.: Non-linear normal modes and invariant manifolds. J. Sound Vib. 150 (1), 170–173 (1991)

    Article  Google Scholar 

  24. Pesheck, E., Pierre, C., Shaw, S.W.: Modal reduction of a nonlinear rotating beam through nonlinear normal modes*. J. Vib. Acoust. 124 (2), 229–236 (2002)

    Article  Google Scholar 

  25. Kerschen, G., Peeters, M., Golinval, J.-C., Vakakis, A.F.: Nonlinear normal modes, part i: a useful framework for the structural dynamicist. Mech. Syst. Signal Process. 23 (1), 170–194 (2009)

    Article  Google Scholar 

  26. Grolet, A., Thouverez, F.: Computing multiple periodic solutions of nonlinear vibration problems using the harmonic balance method and groebner bases. Mech. Syst. Signal Process. 52, 529–547 (2015)

    Article  Google Scholar 

  27. Mohammadali, M., Ahmadian, H.: Efficient model order reduction of structural dynamic systems with local nonlinearities under periodic motion. Shock. Vib. 2014 (2014)

    Google Scholar 

  28. Blanc, F., Touzé, C., Mercier, J.-F., Ege, K., Ben-Dhia, A.-S.B.: On the numerical computation of nonlinear normal modes for reduced-order modelling of conservative vibratory systems. Mech. Syst. Signal Process. 36 (2), 520–539 (2013)

    Article  Google Scholar 

  29. Wang, Y., Palacios, R., Wynn, A.: A method for normal-mode-based model reduction in nonlinear dynamics of slender structures. Comput. Struct. 159, 26–40 (2015)

    Article  Google Scholar 

  30. Amabili, M., Sarkar, A., Paıdoussis, M.: Reduced-order models for nonlinear vibrations of cylindrical shells via the proper orthogonal decomposition method. J. Fluids Struct. 18 (2), 227–250 (2003)

    Article  Google Scholar 

  31. Smith, T.R., Moehlis, J., Holmes, P.: Low-dimensional modelling of turbulence using the proper orthogonal decomposition: a tutorial. Nonlinear Dyn. 41 (1–3), 275–307 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kerschen, G., Feeny, B., Golinval, J.-C.: On the exploitation of chaos to build reduced-order models. Comput. Methods Appl. Mech. Eng. 192 (13), 1785–1795 (2003)

    Article  MATH  Google Scholar 

  33. Vakakis, A.F., Gendelman, O.V., Bergman, L.A., McFarland, D.M., Kerschen, G., Lee, Y.S.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems, vol. 156. Springer Science & Business Media, Berlin (2008)

    MATH  Google Scholar 

  34. Kuether, R.J., Deaner, B.J., Hollkamp, J.J., Allen, M.S.: Evaluation of geometrically nonlinear reduced-order models with nonlinear normal modes. AIAA J. 53 (11), 3273–3285 (2015)

    Article  Google Scholar 

  35. Wang X, Construction of frequency-energy plots for nonlinear dynamical systems from time-series data, Thesis, partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering, Graduate College of the University of Illinois, Urbana-Champaign (2010).

    Google Scholar 

  36. Peter, S., Grundler, A., Reuss, P., Gaul, L., Leine, R.I.: Towards finite element model updating based on nonlinear normal modes. In: Nonlinear Dynamics, vol. 1, pp. 209–217. Springer, Berlin (2016)

    Google Scholar 

  37. Vakakis, A.F., Manevitch, L.I., Mikhlin, Y.V., Pilipchuk, V.N., Zevin, A.A.: Normal Modes and Localization in Nonlinear Systems. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  38. Segala, D.B., and Chelidze, D. Robust and dynamically consistent model order reduction for nonlinear dynamic systems. J. Dyn. Syst. Meas. Control. 137 (2), 021011 (2015)

    Article  Google Scholar 

  39. Chelidze, D.: Identifying robust subspaces for dynamically consistent reduced-order models. In: Nonlinear Dynamics, vol. 2, pp. 123–130. Springer, Berlin (2014)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank National Science Foundation under Grant No. 1100031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Chelidze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Ilbeigi, S., Chelidze, D. (2016). Reduced Order Models for Systems with Disparate Spatial and Temporal Scales. In: De Clerck, J., Epp, D. (eds) Rotating Machinery, Hybrid Test Methods, Vibro-Acoustics & Laser Vibrometry, Volume 8. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-30084-9_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30084-9_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30083-2

  • Online ISBN: 978-3-319-30084-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics