Skip to main content

Advanced MR Techniques in Pediatric Neuroradiology: What Is Ready for Clinical Prime Time?

  • Chapter
  • First Online:
Diseases of the Brain, Head and Neck, Spine 2016-2019
  • 2028 Accesses

Abstract

For an advanced MR technique to be ready for clinical prime time, (1) it must reliably detect abnormalities in individuals, not just provide statistical group differences; (2) processed images must be available rapidly; (3) acquisition times must be reasonable; and (4) time required by professional or supporting staff to create relevant images must be financially sustainable. Also ideally individual differences are visible on an image for the most rapid adaption in clinical practice. In this chapter diffusion imaging, MR spectroscopy, arterial spin labeling, fetal triplane reconstruction, and quantitative T1 and T2 imaging will be discussed, and examples where these sequences have clinical utility in individual pediatric patients will be provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Setsompop K, Cohen-Adad J, Gagoski BA, Raij T, Yendiki A, Keil B et al (2012) Improving diffusion MRI using simultaneous multi-slice echo planar imaging. Neuroimage 63(1):569–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mori S, Zhang J (2006) Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51(5):527–539

    Article  CAS  PubMed  Google Scholar 

  3. Basser PJ, Jones DK (2002) Diffusion-tensor MRI: theory, experimental design and data analysis – a technical review. NMR Biomed 15(7–8):456–467

    Article  PubMed  Google Scholar 

  4. Hagmann P, Jonasson L, Maeder P, Thiran JP, Wedeen VJ, Meuli R (2006) Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics 26(Suppl 1):S205–S223

    Article  PubMed  Google Scholar 

  5. Schaefer PW, Grant PE, Gonzalez RG (2000) Diffusion-weighted MR imaging of the brain. Radiology 217(2):331–345

    Article  CAS  PubMed  Google Scholar 

  6. Grant PE, Matsuda KM (2003) Application of new MR techniques in pediatric patients. Magn Reson Imaging Clin N Am 11(3):493–522

    Article  PubMed  Google Scholar 

  7. Nossin-Manor R, Card D, Morris D, Noormohamed S, Shroff MM, Whyte HE et al (2013) Quantitative MRI in the very preterm brain: assessing tissue organization and myelination using magnetization transfer, diffusion tensor and T(1) imaging. Neuroimage 64:505–516

    Article  PubMed  Google Scholar 

  8. Sadeghi N, Prastawa M, Fletcher PT, Wolff J, Gilmore JH, Gerig G (2013) Regional characterization of longitudinal DT-MRI to study white matter maturation of the early developing brain. Neuroimage 68:236–247

    Article  PubMed  PubMed Central  Google Scholar 

  9. Miller JH, McKinstry RC, Philip JV, Mukherjee P, Neil JJ (2003) Diffusion-tensor MR imaging of normal brain maturation: a guide to structural development and myelination. AJR Am J Roentgenol 180(3):851–859

    Article  PubMed  Google Scholar 

  10. Grant PE, He J, Halpern EF, Wu O, Schaefer PW, Schwamm LH et al (2001) Frequency and clinical context of decreased apparent diffusion coefficient reversal in the human brain. Radiology 221(1):43–50

    Article  CAS  PubMed  Google Scholar 

  11. Pujol S, Wells W, Pierpaoli C, Brun C, Gee J, Cheng G et al (2015) The DTI challenge: toward standardized evaluation of diffusion tensor imaging tractography for neurosurgery. J Neuroimaging 25(6):875–882

    Article  PubMed  Google Scholar 

  12. Campanella M, Ius T, Skrap M, Fadiga L (2014) Alterations in fiber pathways reveal brain tumor typology: a diffusion tractography study. PeerJ 2, e497

    Article  PubMed  PubMed Central  Google Scholar 

  13. Panigrahy A, Nelson MD Jr, Bluml S (2010) Magnetic resonance spectroscopy in pediatric neuroradiology: clinical and research applications. Pediatr Radiol 40(1):3–30

    Article  PubMed  Google Scholar 

  14. Cecil KM (2006) MR spectroscopy of metabolic disorders. Neuroimaging Clin N Am 16(1):87–116, viii

    Article  PubMed  Google Scholar 

  15. Cecil KM (2013) Proton magnetic resonance spectroscopy: technique for the neuroradiologist. Neuroimaging Clin N Am 23(3):381–392

    Article  PubMed  PubMed Central  Google Scholar 

  16. Oz G, Alger JR, Barker PB, Bartha R, Bizzi A, Boesch C et al (2014) Clinical proton MR spectroscopy in central nervous system disorders. Radiology 270(3):658–679

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yazbek S, Prabhu SP, Connaughton P, Grant PE, Gagoski B (2015) Comparison of accelerated 3-D spiral chemical shift imaging and single-voxel spectroscopy at 3T in the pediatric age group. Pediatr Radiol 45(9):1417–1422

    Article  PubMed  Google Scholar 

  18. Bluml S, Wisnowski JL, Nelson MD Jr, Paquette L, Gilles FH, Kinney HC et al (2013) Metabolic maturation of the human brain from birth through adolescence: insights from in vivo magnetic resonance spectroscopy. Cereb Cortex 23(12):2944–2955

    Article  PubMed  PubMed Central  Google Scholar 

  19. Petersen ET, Zimine I, Ho YC, Golay X (2006) Non-invasive measurement of perfusion: a critical review of arterial spin labelling techniques. Br J Radiol 79(944):688–701

    Article  CAS  PubMed  Google Scholar 

  20. Deibler AR, Pollock JM, Kraft RA, Tan H, Burdette JH, Maldjian JA (2008) Arterial spin-labeling in routine clinical practice, part 1: technique and artifacts. AJNR Am J Neuroradiol 29(7):1228–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Amukotuwa SA, Yu C, Zaharchuk G (2016) 3D Pseudocontinuous arterial spin labeling in routine clinical practice: A review of clinically significant artifacts. J Magn Reson Imaging 43(1):11–27

    Article  PubMed  Google Scholar 

  22. Deibler AR, Pollock JM, Kraft RA, Tan H, Burdette JH, Maldjian JA (2008) Arterial spin-labeling in routine clinical practice, part 2: hypoperfusion patterns. AJNR Am J Neuroradiol 29(7):1235–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Deibler AR, Pollock JM, Kraft RA, Tan H, Burdette JH, Maldjian JA (2008) Arterial spin-labeling in routine clinical practice, part 3: hyperperfusion patterns. AJNR Am J Neuroradiol 29(8):1428–1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Petcharunpaisan S, Ramalho J, Castillo M (2010) Arterial spin labeling in neuroimaging. World J Radiol 2(10):384–398

    Article  PubMed  PubMed Central  Google Scholar 

  25. Telischak NA, Detre JA, Zaharchuk G (2015) Arterial spin labeling MRI: clinical applications in the brain. J Magn Reson Imaging 41(5):1165–1180

    Article  PubMed  Google Scholar 

  26. Alsop DC, Detre JA, Golay X, Gunther M, Hendrikse J, Hernandez-Garcia L et al (2015) Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med 73(1):spcone

    Google Scholar 

  27. Tourbier S, Bresson X, Hagmann P, Thiran JP, Meuli R, Cuadra MB (2015) An efficient total variation algorithm for super-resolution in fetal brain MRI with adaptive regularization. Neuroimage 118:584–597

    Article  PubMed  Google Scholar 

  28. Rousseau F, Kim K, Studholme C, Koob M, Dietemann JL (2010) On super-resolution for fetal brain MRI. Med Image Comput Comput Assist Interv 13(Pt 2):355–362

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gholipour A, Estroff JA, Barnewolt CE, Connolly SA, Warfield SK (2011) Fetal brain volumetry through MRI volumetric reconstruction and segmentation. Int J Comput Assist Radiol Surg 6(3):329–339

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kuklisova-Murgasova M, Quaghebeur G, Rutherford MA, Hajnal JV, Schnabel JA (2012) Reconstruction of fetal brain MRI with intensity matching and complete outlier removal. Med Image Anal 16(8):1550–1564

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ellen Grant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Grant, P.E. (2016). Advanced MR Techniques in Pediatric Neuroradiology: What Is Ready for Clinical Prime Time?. In: Hodler, J., Kubik-Huch, R., von Schulthess, G. (eds) Diseases of the Brain, Head and Neck, Spine 2016-2019. Springer, Cham. https://doi.org/10.1007/978-3-319-30081-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30081-8_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30080-1

  • Online ISBN: 978-3-319-30081-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics