Skip to main content

The Basics of Autophagy

  • Chapter
  • First Online:
Autophagy Networks in Inflammation

Abstract

Autophagy can be defined as a catabolic process that maintains cellular homeostasis by the degradation of damaged or excess cellular organelles and protein aggregates from the cytoplasm, thereby enabling cell survival. Cell culture and in vivo studies have revealed the importance of autophagy in numerous diseases, including cancer, aging, neurodegenerative, infectious and inflammatory diseases. Therefore, understanding the molecular basis of the formation and composition of the different structures involved in autophagy, as well as the regulation of this pathway, is an important goal for converting autophagy into a potential therapeutic target in a plethora of diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Adenylate cyclase

Akt:

v-akt murine thymoma viral oncogene homolog 1

Ambra1:

Activating molecule in Beclin-1-regulated autophagy

AMPK:

AMP-activated protein kinase

Atg:

Autophagy-related genes

Bcl:

B-cell lymphoma

Bnip3:

Bcl-2/adenovirus E1B 19 kDa-interacting protein 3

CMA:

Chaperone-mediated autophagy

DEPTOR:

DEP-domain containing mTOR interacting protein

4E-BP1:

Translation initiation factor 4E-binding protein-1

Epac:

Exchange protein directly activated by cAMP

ER:

Endoplasmic reticulum

ERK1/2:

Extracellular-signal-regulated kinase 1/2

ESCRT:

Endosomal sorting complex required for transport

FIP200:

Focal adhesion kinase family-interacting protein of 200 kDa

FoxO3:

Forkhead box O3

GAP:

GTPase-activating protein

GPCRs:

G-protein-coupled receptors

HOPS:

Homotypic fusion and protein sorting vacuoles

hVps:

Mammalian homologue of vacuolar protein sorting

IKK:

Inhibitor of nuclear factor κB kinase

IMPase:

inositol monophosphatase

IP3R:

Inositol 1,4,5-triphosphate receptor

I1R:

Imidazoline-1 receptor

JNK1:

c-Jun N-terminal kinase 1

LC3:

Microtubule-associated protein light chain 3

LKB1:

Liver Kinase B1

mLST8:

Lethal mammalian protein SEC13 With 8

mSIN1:

mammalian stress-activated protein kinase mitogen activated-interacting protein 1

mTOR:

Mammalian target of rapamycin

mTORC:

mTOR complex

p70S6K:

Ribosomal protein S6 kinase-1

PDK1:

Phosphoinositide-dependent kinase 1

PE:

Phosphatidylethanolamine

PI3K:

Phosphoinositide 3-kinase

PI3KC1a:

Class Ia PI3K

PI3KC3:

Class III PI3K

PI3KK:

PI3K-related protein kinase

PRAS40:

Proline-rich Akt substrate of 40 kDa

PTEN:

Phosphatase and tensin homologue deleted from chromosome 10

Raptor:

Regulatory-associated protein of mTOR

Rheb:

Ras homologue enriched in brain

Rictor:

Rapamycin-insensitive companion of mTOR

SLC:

Solute carrier

SNARE:

N-ethylmaleimide-sensitive factor-attachment protein receptor

TFEB:

Transcription factor EB

TOR:

Target of rapamycin

TSC:

Tuberous sclerosis complex

UPS:

Ubiquitin-proteasome system

ULK1:

UNC-51-like kinase 1

UVRAG:

UV irradiation resistance-associated gene

v-ATPase:

Vacuolar H+-ATPase

Vps:

Vacuolar protein sorting

References

  1. Abrahamsen H, Stenmark H, Platta HW (2012) Ubiquitination and phosphorylation of beclin 1 and its binding partners: tuning class III phosphatidylinositol 3-kinase activity and tumor suppression. FEBS Lett 586(11):1584–1591. doi:10.1016/j.febslet.2012.04.046

    Article  CAS  PubMed  Google Scholar 

  2. Agarraberes FA, Dice JF (2001) A molecular chaperone complex at the lysosomal membrane is required for protein translocation. J Cell Sci 114(Pt 13):2491–2499

    CAS  PubMed  Google Scholar 

  3. Agarraberes FA, Terlecky SR, Dice JF (1997) An intralysosomal hsp70 is required for a selective pathway of lysosomal protein degradation. J Cell Biol 137(4):825–834. doi:10.1083/jcb.137.4.825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ashford TP, Porter KR (1962) Cytoplasmic components in hepatic cell lysosomes. J Cell Biol 12:198–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Baba M, Takeshige K, Baba N, Ohsumi Y (1994) Ultrastructural analysis of the autophagic process in yeast: detection of autophagosomes and their characterization. J Cell Biol 124(6):903–913

    Article  CAS  PubMed  Google Scholar 

  6. Baehrecke EH (2005) Autophagy: dual roles in life and death? Nat Rev Mol Cell Biol 6(6):505–510. doi:10.1038/nrm1666

    Article  CAS  PubMed  Google Scholar 

  7. Behrends C, Sowa ME, Gygi SP, Harper JW (2010) Network organization of the human autophagy system. Nature 466(7302):68–76. doi:10.1038/nature09204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bjorkoy G, Lamark T, Johansen T (2006) p62/SQSTM1: a missing link between protein aggregates and the autophagy machinery. Autophagy 2(2):138–139

    Article  PubMed  Google Scholar 

  9. Bursch W (2001) The autophagosomal-lysosomal compartment in programmed cell death. Cell Death Differ 8(6):569–581. doi:10.1038/sj.cdd.4400852

    Article  CAS  PubMed  Google Scholar 

  10. Bursch W, Ellinger A, Gerner C, Frohwein U, Schulte-Hermann R (2000) Programmed cell death (PCD). Apoptosis, autophagic PCD, or others? Ann N Y Acad Sci 926:1–12

    Article  CAS  PubMed  Google Scholar 

  11. Buytaert E, Callewaert G, Vandenheede JR, Agostinis P (2006) Deficiency in apoptotic effectors Bax and Bak reveals an autophagic cell death pathway initiated by photodamage to the endoplasmic reticulum. Autophagy 2(3):238–240

    Article  CAS  PubMed  Google Scholar 

  12. Ciechanover A (2005) Proteolysis: from the lysosome to ubiquitin and the proteasome. Nature Rev Mol Cell Biol 6(1):79–87. doi:10.1038/nrm1552

    Article  CAS  Google Scholar 

  13. Ciechomska IA, Goemans GC, Skepper JN, Tolkovsky AM (2009) Bcl-2 complexed with Beclin-1 maintains full anti-apoptotic function. Oncogene 28(21):2128–2141. doi:10.1038/onc.2009.60

    Article  CAS  PubMed  Google Scholar 

  14. Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R (2009) Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325(5937):201–204. doi:10.1126/science.1173635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Criollo A, Senovilla L, Authier H, Maiuri MC, Morselli E, Vitale I, Kepp O, Tasdemir E, Galluzzi L, Shen S, Tailler M, Delahaye N, Tesniere A, De Stefano D, Younes AB, Harper F, Pierron G, Lavandero S, Zitvogel L, Israel A, Baud V, Kroemer G (2010) The IKK complex contributes to the induction of autophagy. EMBO J 29(3):619–631. doi:10.1038/emboj.2009.364

    Article  CAS  PubMed  Google Scholar 

  16. Chiang HL, Dice JF (1988) Peptide sequences that target proteins for enhanced degradation during serum withdrawal. J Biol Chem 263(14):6797–6805

    CAS  PubMed  Google Scholar 

  17. Chin RM, Fu X, Pai MY, Vergnes L, Hwang H, Deng G, Diep S, Lomenick B, Meli VS, Monsalve GC, Hu E, Whelan SA, Wang JX, Jung G, Solis GM, Fazlollahi F, Kaweeteerawat C, Quach A, Nili M, Krall AS, Godwin HA, Chang HR, Faull KF, Guo F, Jiang M, Trauger SA, Saghatelian A, Braas D, Christofk HR, Clarke CF, Teitell MA, Petrascheck M, Reue K, Jung ME, Frand AR, Huang J (2014) The metabolite alpha-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature 510(7505):397–401. doi:10.1038/nature13264

    CAS  PubMed  Google Scholar 

  18. Degtyarev M, De Maziere A, Orr C, Lin J, Lee BB, Tien JY, Prior WW, van Dijk S, Wu H, Gray DC, Davis DP, Stern HM, Murray LJ, Hoeflich KP, Klumperman J, Friedman LS, Lin K (2008) Akt inhibition promotes autophagy and sensitizes PTEN-null tumors to lysosomotropic agents. J Cell Biol 183(1):101–116. doi:10.1083/jcb.200801099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dubouloz F, Deloche O, Wanke V, Cameroni E, De Virgilio C (2005) The TOR and EGO protein complexes orchestrate microautophagy in yeast. Mol Cell 19(1):15–26. doi:10.1016/j.molcel.2005.05.020

    Article  CAS  PubMed  Google Scholar 

  20. Feng Y, He D, Yao Z, Klionsky DJ (2014) The machinery of macroautophagy. Cell Res 24(1):24–41. doi:10.1038/cr.2013.168

    Article  CAS  PubMed  Google Scholar 

  21. Fengsrud M, Roos N, Berg T, Liou W, Slot JW, Seglen PO (1995) Ultrastructural and immunocytochemical characterization of autophagic vacuoles in isolated hepatocytes: effects of vinblastine and asparagine on vacuole distributions. Exp Cell Res 221(2):504–519. doi:10.1006/excr.1995.1402

    Article  CAS  PubMed  Google Scholar 

  22. Fimia GM, Stoykova A, Romagnoli A, Giunta L, Di Bartolomeo S, Nardacci R, Corazzari M, Fuoco C, Ucar A, Schwartz P, Gruss P, Piacentini M, Chowdhury K, Cecconi F (2007) Ambra1 regulates autophagy and development of the nervous system. Nature 447(7148):1121–1125. doi:10.1038/nature05925

    CAS  PubMed  Google Scholar 

  23. Fujiwara Y, Furuta A, Kikuchi H, Aizawa S, Hatanaka Y, Konya C, Uchida K, Yoshimura A, Tamai Y, Wada K, Kabuta T (2013) Discovery of a novel type of autophagy targeting RNA. Autophagy 9(3):403–409. doi:10.4161/auto.23002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ganley IG, Wong PM, Gammoh N, Jiang X (2011) Distinct autophagosomal-lysosomal fusion mechanism revealed by thapsigargin-induced autophagy arrest. Mol Cell 42(6):731–743. doi:10.1016/j.molcel.2011.04.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gonzalez-Polo RA, Niso-Santano M, Ortiz-Ortiz MA, Gomez-Martin A, Moran JM, Garcia-Rubio L, Francisco-Morcillo J, Zaragoza C, Soler G, Fuentes JM (2007) Relationship between autophagy and apoptotic cell death in human neuroblastoma cells treated with paraquat: could autophagy be a “brake” in paraquat-induced apoptotic death? Autophagy 3(4):366–367

    Article  CAS  PubMed  Google Scholar 

  26. Gordon PB, Holen I, Fosse M, Rotnes JS, Seglen PO (1993) Dependence of hepatocytic autophagy on intracellularly sequestered calcium. J Biol Chem 268(35):26107–26112

    CAS  PubMed  Google Scholar 

  27. He C, Levine B (2010) The Beclin 1 interactome. Curr Opin Cell Biol 22(2):140–149. doi:10.1016/j.ceb.2010.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Inoki K, Li Y, Zhu T, Wu J, Guan KL (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4(9):648–657. doi:10.1038/ncb839

    Article  CAS  PubMed  Google Scholar 

  29. Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115(5):577–590

    Article  CAS  PubMed  Google Scholar 

  30. Jewell JL, Russell RC, Guan KL (2013) Amino acid signalling upstream of mTOR. Nat Rev Mol Cell Biol 14(3):133–139. doi:10.1038/nrm3522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jung CH, Ro SH, Cao J, Otto NM, Kim DH (2010) mTOR regulation of autophagy. FEBS Lett 584(7):1287–1295. doi:10.1016/j.febslet.2010.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19(21):5720–5728. doi:10.1093/emboj/19.21.5720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kaushik S, Bandyopadhyay U, Sridhar S, Kiffin R, Martinez-Vicente M, Kon M, Orenstein SJ, Wong E, Cuervo AM (2011) Chaperone-mediated autophagy at a glance. J Cell Sci 124(Pt 4):495–499. doi:10.1242/jcs.073874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kaushik S, Massey AC, Mizushima N, Cuervo AM (2008) Constitutive activation of chaperone-mediated autophagy in cells with impaired macroautophagy. Mol Biol Cell 19(5):2179–2192. doi:10.1091/mbc.E07-11-1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Klionsky DJ (2005) The molecular machinery of autophagy: unanswered questions. J Cell Sci 118(Pt 1):7–18. doi:10.1242/jcs.01620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Klionsky DJ, Cuervo AM, Dunn WA Jr, Levine B, van der Klei I, Seglen PO (2007) How shall I eat thee? Autophagy 3(5):413–416. doi:4377

    Article  PubMed  Google Scholar 

  37. Klionsky DJ, Schulman BA (2014) Dynamic regulation of macroautophagy by distinctive ubiquitin-like proteins. Nat Struct Mol Biol 21(4):336–345. doi:10.1038/nsmb.2787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kondo Y, Kondo S (2006) Autophagy and cancer therapy. Autophagy 2(2):85–90

    Article  PubMed  Google Scholar 

  39. Kuma A, Matsui M, Mizushima N (2007) LC3, an autophagosome marker, can be incorporated into protein aggregates independent of autophagy: caution in the interpretation of LC3 localization. Autophagy 3(4):323–328

    Article  CAS  PubMed  Google Scholar 

  40. Larrea MD, Liang J, Da Silva T, Hong F, Shao SH, Han K, Dumont D, Slingerland JM (2008) Phosphorylation of p27Kip1 regulates assembly and activation of cyclin D1-Cdk4. Mol Cell Biol 28(20):6462–6472. doi:10.1128/MCB.02300-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E, Harta G, Brownstein MJ, Jonnalagada S, Chernova T, Dehejia A, Lavedan C, Gasser T, Steinbach PJ, Wilkinson KD, Polymeropoulos MH (1998) The ubiquitin pathway in Parkinson’s disease. Nature 395(6701):451–452. doi:10.1038/26652

    Article  CAS  PubMed  Google Scholar 

  42. Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6(4):463–477

    Article  CAS  PubMed  Google Scholar 

  43. Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, Oppliger W, Jenoe P, Hall MN (2002) Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10(3):457–468

    Article  CAS  PubMed  Google Scholar 

  44. Loos B, Engelbrecht AM, Lockshin RA, Klionsky DJ, Zakeri Z (2013) The variability of autophagy and cell death susceptibility Unanswered questions. Autophagy 9(9):1270–1285. doi:10.4161/Auto.25560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. LoPiccolo J, Blumenthal GM, Bernstein WB, Dennis PA (2008) Targeting the PI3K/Akt/mTOR pathway: effective combinations and clinical considerations. Drug Resist Updat 11(1–2):32–50. doi:10.1016/j.drup.2007.11.003

    Article  CAS  PubMed  Google Scholar 

  46. Madeo F, Pietrocola F, Eisenberg T, Kroemer G (2014) Caloric restriction mimetics: towards a molecular definition. Nat Rev Drug Discov 13(10):727–740. doi:10.1038/nrd4391

    Article  CAS  PubMed  Google Scholar 

  47. Marino G, Niso-Santano M, Baehrecke EH, Kroemer G (2014) Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 15(2):81–94. doi:10.1038/nrm3735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Martinez-Vicente M, Cuervo AM (2007) Autophagy and neurodegeneration: when the cleaning crew goes on strike. Lancet Neurol 6(4):352–361. doi:10.1016/S1474-4422(07)70076-5

    Article  CAS  PubMed  Google Scholar 

  49. Masiero E, Agatea L, Mammucari C, Blaauw B, Loro E, Komatsu M, Metzger D, Reggiani C, Schiaffino S, Sandri M (2009) Autophagy is required to maintain muscle mass. Cell Metab 10(6):507–515. doi:10.1016/j.cmet.2009.10.008

    Article  CAS  PubMed  Google Scholar 

  50. Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, Kurotori N, Maejima I, Shirahama-Noda K, Ichimura T, Isobe T, Akira S, Noda T, Yoshimori T (2009) Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol 11(4):385–396. doi:10.1038/ncb1846

    Article  CAS  PubMed  Google Scholar 

  51. Meijer AJ (2008) Amino acid regulation of autophagosome formation. Methods Mol Biol 445:89–109. doi:10.1007/978-1-59745-157-4_5

    Article  CAS  PubMed  Google Scholar 

  52. Mijaljica D, Prescott M, Devenish RJ (2011) Microautophagy in mammalian cells: revisiting a 40-year-old conundrum. Autophagy 7(7):673–682

    Article  CAS  PubMed  Google Scholar 

  53. Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD, Klionsky DJ, Ohsumi M, Ohsumi Y (1998) A protein conjugation system essential for autophagy. Nature 395(6700):395–398. doi:10.1038/26506

    Article  CAS  PubMed  Google Scholar 

  54. Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, Tokuhisa T, Ohsumi Y, Yoshimori T (2001) Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol 152(4):657–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M, Omiya S, Mizote I, Matsumura Y, Asahi M, Nishida K, Hori M, Mizushima N, Otsu K (2007) The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med 13(5):619–624. doi:10.1038/nm1574

    Article  CAS  PubMed  Google Scholar 

  56. Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, Yang H, Hild M, Kung C, Wilson C, Myer VE, MacKeigan JP, Porter JA, Wang YK, Cantley LC, Finan PM, Murphy LO (2009) Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136(3):521–534. doi:10.1016/j.cell.2008.11.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ohsumi Y (2001) Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol 2(3):211–216. doi:10.1038/35056522

    Article  CAS  PubMed  Google Scholar 

  58. Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282(33):24131–24145. doi:10.1074/jbc.M702824200

    Article  CAS  PubMed  Google Scholar 

  59. Papandreou I, Lim AL, Laderoute K, Denko NC (2008) Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L. Cell Death Differ 15(10):1572–1581. doi:10.1038/cdd.2008.84

    Article  CAS  PubMed  Google Scholar 

  60. Parys JB, Decuypere JP, Bultynck G (2012) Role of the inositol 1,4,5-trisphosphate receptor/Ca2 + −release channel in autophagy. Cell Commun Signal 10(1):17. doi:10.1186/1478-811X-10-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Parzych KR, Klionsky DJ (2014) An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal 20(3):460–473. doi:10.1089/ars.2013.5371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Petiot A, Ogier-Denis E, Blommaart EF, Meijer AJ, Codogno P (2000) Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem 275(2):992–998

    Article  CAS  PubMed  Google Scholar 

  63. Puissant A, Auberger P (2010) AMPK- and p62/SQSTM1-dependent autophagy mediate resveratrol-induced cell death in chronic myelogenous leukemia. Autophagy 6(5):655–657. doi:10.4161/auto.6.5.12126

    Article  PubMed  Google Scholar 

  64. Ravikumar B, Imarisio S, Sarkar S, O’Kane CJ, Rubinsztein DC (2008) Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease. J Cell Sci 121(Pt 10):1649–1660. doi:10.1242/jcs.025726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ravikumar B, Rubinsztein DC (2004) Can autophagy protect against neurodegeneration caused by aggregate-prone proteins? Neuroreport 15(16):2443–2445

    Article  PubMed  Google Scholar 

  66. Rusten TE, Stenmark H (2009) How do ESCRT proteins control autophagy? J Cell Sci 122(Pt 13):2179–2183. doi:10.1242/jcs.050021

    Article  CAS  PubMed  Google Scholar 

  67. Salminen A, Kaarniranta K, Kauppinen A (2013) Beclin 1 interactome controls the crosstalk between apoptosis, autophagy and inflammasome activation: impact on the aging process. Ageing Res Rev 12(2):520–534. doi:10.1016/j.arr.2012.11.004

    Article  CAS  PubMed  Google Scholar 

  68. Salvador N, Aguado C, Horst M, Knecht E (2000) Import of a cytosolic protein into lysosomes by chaperone-mediated autophagy depends on its folding state. J Biol Chem 275(35):27447–27456. doi:10.1074/jbc.M001394200

    CAS  PubMed  Google Scholar 

  69. Sarkar S (2013) Regulation of autophagy by mTOR-dependent and mTOR-independent pathways: autophagy dysfunction in neurodegenerative diseases and therapeutic application of autophagy enhancers. Biochem Soc Trans 41(5):1103–1130. doi:10.1042/BST20130134

    Article  CAS  PubMed  Google Scholar 

  70. Sarkar S, Floto RA, Berger Z, Imarisio S, Cordenier A, Pasco M, Cook LJ, Rubinsztein DC (2005) Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol 170(7):1101–1111. doi:10.1083/jcb.200504035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sarkar S, Korolchuk VI, Renna M, Imarisio S, Fleming A, Williams A, Garcia-Arencibia M, Rose C, Luo S, Underwood BR, Kroemer G, O’Kane CJ, Rubinsztein DC (2011) Complex inhibitory effects of nitric oxide on autophagy. Mol Cell 43(1):19–32. doi:10.1016/j.molcel.2011.04.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Schneider JL, Suh Y, Cuervo AM (2014) Deficient chaperone-mediated autophagy in liver leads to metabolic dysregulation. Cell Metab 20(3):417–432. doi:10.1016/j.cmet.2014.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Schroeder S, Pendl T, Zimmermann A, Eisenberg T, Carmona-Gutierrez D, Ruckenstuhl C, Marino G, Pietrocola F, Harger A, Magnes C, Sinner F, Pieber TR, Dengjel J, Sigrist SJ, Kroemer G, Madeo F (2014) Acetyl-coenzyme A: a metabolic master regulator of autophagy and longevity. Autophagy 10(7):1335–1337. doi:10.4161/auto.28919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shinojima N, Yokoyama T, Kondo Y, Kondo S (2007) Roles of the Akt/mTOR/p70S6K and ERK1/2 signaling pathways in curcumin-induced autophagy. Autophagy 3(6):635–637

    Article  CAS  PubMed  Google Scholar 

  75. Singh R, Xiang Y, Wang Y, Baikati K, Cuervo AM, Luu YK, Tang Y, Pessin JE, Schwartz GJ, Czaja MJ (2009) Autophagy regulates adipose mass and differentiation in mice. J Clin Invest 119(11):3329–3339. doi:10.1172/JCI39228

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Skupin A, Falcke M (2008) The role of IP3R clustering in Ca2+ signalinG. Genome Inform 20:15–24

    CAS  PubMed  Google Scholar 

  77. Stroupe C (2011) Autophagy: cells SNARE selves. Curr Biol 21(18):R697–R699. doi:10.1016/j.cub.2011.08.017

    Article  CAS  PubMed  Google Scholar 

  78. Suzuki K, Ohsumi Y (2007) Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae. FEBS Lett 581(11):2156–2161. doi:10.1016/j.febslet.2007.01.096

    Article  CAS  PubMed  Google Scholar 

  79. Tanida I, Ueno T, Kominami E (2004) LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol 36(12):2503–2518. doi:10.1016/j.biocel.2004.05.009

    Article  CAS  PubMed  Google Scholar 

  80. Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D’Amelio M, Criollo A, Morselli E, Zhu C, Harper F, Nannmark U, Samara C, Pinton P, Vicencio JM, Carnuccio R, Moll UM, Madeo F, Paterlini-Brechot P, Rizzuto R, Szabadkai G, Pierron G, Blomgren K, Tavernarakis N, Codogno P, Cecconi F, Kroemer G (2008) Regulation of autophagy by cytoplasmic p53. Nat Cell Biol 10(6):676–687. doi:10.1038/ncb1730

    Article  CAS  PubMed  Google Scholar 

  81. Terlecky SR, Dice JF (1993) Polypeptide import and degradation by isolated lysosomes. J Biol Chem 268(31):23490–23495

    CAS  PubMed  Google Scholar 

  82. Todde V, Veenhuis M, van der Klei IJ (2009) Autophagy: principles and significance in health and disease. Biochim Biophys Acta 1792(1):3–13. doi:10.1016/j.bbadis.2008.10.016

    Article  CAS  PubMed  Google Scholar 

  83. Uemura T, Yamamoto M, Kametaka A, Sou YS, Yabashi A, Yamada A, Annoh H, Kametaka S, Komatsu M, Waguri S (2014) A cluster of thin tubular structures mediates transformation of the endoplasmic reticulum to autophagic isolation membrane. Mol Cell Biol 34(9):1695–1706. doi:10.1128/MCB.01327-13

    Article  PubMed  PubMed Central  Google Scholar 

  84. Wada Y, Sun-Wada GH, Kawamura N (2013) Microautophagy in the visceral endoderm is essential for mouse early development. Autophagy 9(2):252–254. doi:10.4161/auto.22585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Williams A, Sarkar S, Cuddon P, Ttofi EK, Saiki S, Siddiqi FH, Jahreiss L, Fleming A, Pask D, Goldsmith P, O’Kane CJ, Floto RA, Rubinsztein DC (2008) Novel targets for Huntington’s disease in an mTOR-independent autophagy pathway. Nat Chem Biol 4(5):295–305. doi:10.1038/nchembio.79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yakhine-Diop SM, Bravo-San Pedro JM, Gomez-Sanchez R, Pizarro-Estrella E, Rodriguez-Arribas M, Climent V, Aiastui A, Lopez de Munain A, Fuentes JM, Gonzalez-Polo RA (2014) G2019S LRRK2 mutant fibroblasts from Parkinson’s disease patients show increased sensitivity to neurotoxin 1-methyl-4-phenylpyridinium dependent of autophagy. Toxicology 324:1–9. doi:10.1016/j.tox.2014.07.001

    Article  CAS  PubMed  Google Scholar 

  87. Yang Q, Inoki K, Kim E, Guan KL (2006) TSC1/TSC2 and Rheb have different effects on TORC1 and TORC2 activity. Proc Natl Acad Sci U S A 103(18):6811–6816. doi:10.1073/pnas.0602282103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yla-Anttila P, Vihinen H, Jokitalo E, Eskelinen EL (2009) 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 5(8):1180–1185

    Article  PubMed  Google Scholar 

  89. Young AR, Chan EY, Hu XW, Kochl R, Crawshaw SG, High S, Hailey DW, Lippincott-Schwartz J, Tooze SA (2006) Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J Cell Sci 119(Pt 18):3888–3900. doi:10.1242/jcs.03172

    Article  CAS  PubMed  Google Scholar 

  90. Zhong Y, Wang QJ, Li X, Yan Y, Backer JM, Chait BT, Heintz N, Yue Z (2009) Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol 11(4):468–476. doi:10.1038/ncb1854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhou J, Liao W, Yang J, Ma K, Li X, Wang Y, Wang D, Wang L, Zhang Y, Yin Y, Zhao Y, Zhu WG (2012) FOXO3 induces FOXO1-dependent autophagy by activating the AKT1 signaling pathway. Autophagy 8(12):1712–1723. doi:10.4161/auto.21830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12(1):21–35. doi:10.1038/nrm3025

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Rosa-Ana González-Polo was supported by a talent research contract (Junta de Extremadura, TA13009, Spain) and received research support from the Ministerio de Ciencia e Innovación, Spain (PI14/00170). Dr. José M. Fuentes received research support from the Ministerio de Ciencia e Innovación, Spain, CIBERNED (CB06/05/004), Consejería, Economía, Comercio e Innovación Junta de Extremadura (GR15045), Ministerio de Ciencia e Innovación, Spain (PI150034). This work is supported also by “Fondo Europeo de Desarrollo Regional” (FEDER), from European Union. We all thanks to FUNDESALUD for helpful assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rosa A. González-Polo or José M. Fuentes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

González-Polo, R.A. et al. (2016). The Basics of Autophagy. In: Maiuri, M., De Stefano, D. (eds) Autophagy Networks in Inflammation. Progress in Inflammation Research. Springer, Cham. https://doi.org/10.1007/978-3-319-30079-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30079-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30077-1

  • Online ISBN: 978-3-319-30079-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics