Skip to main content

Chlorine-Free Catalysis for the Synthesis of Dialkyl Carbonate via Oxidative Carbonylation of Alcohols

  • Chapter
  • First Online:
Book cover Chemistry Beyond Chlorine
  • 1498 Accesses

Abstract

With the global phase-out of the phosgenation processes, oxidative carbonylation of alcohols to synthesize short-chain dialkyl carbonates (especially DMC, DEC) is considered as a promising route under the guidance of “green chemistry.” Despite the good initial performance of chlorine-containing catalyst, including CuCl, CuCl2, PdCl2, CuCl2-PdCl2, etc., the loss of chlorine during reaction results in the catalyst deactivation, equipment corrosion, and environmental problems. The chapter is to review the progress in oxidative carbonylation of alcohols promoted by chlorine-free catalysts. The catalyst development and process improvement as well as mechanistic understanding are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tundo P, Selva M (2002) The chemistry of dimethyl carbonate. Acc Chem Res 35:706–716

    Article  CAS  Google Scholar 

  2. Keller N, Rebmann G, Keller V (2010) Catalysts, mechanisms and industrial processes for the dimethylcarbonate synthesis. J Mol Catal A Chem 317:1–18

    Article  CAS  Google Scholar 

  3. Huang SY, Chen PZ, Yan B et al (2013) Modification of Y zeolite with alkaline treatment: textural properties and catalytic activity for diethyl carbonate synthesis. Ind Eng Chem Res 52:6349–6356

    Article  CAS  Google Scholar 

  4. Huang SY, Yan B, Wang S et al (2015) Recent advances in dialkyl carbonates synthesis and applications. Chem Soc Rev. doi:10.1039/c4cs00374h

    Google Scholar 

  5. Selva M, Perosa A (2008) Green chemistry metrics: a comparative evaluation of dimethyl carbonate, methyl iodide, dimethyl sulfate and methanol as methylating agents. Green Chem 10:457–464

    Article  CAS  Google Scholar 

  6. Pacheco MA, Marshall CL (1997) Review of dimethyl carbonate (DMC) manufacture and its characteristics as a fuel additive. Energy Fuel 11:2–29

    Article  CAS  Google Scholar 

  7. Peng WC, Zhao N, Xiao FK et al (2012) Recent progress in phosgene-free methods for synthesis of dimethyl carbonate. Pure Appl Chem 84:603–620

    CAS  Google Scholar 

  8. Romano U, Tessi E, Cipriani G, Micucci L (1980) Method for the preparation of esters of carbonic acid. US Patent 4,218,391 AUG 1980

    Google Scholar 

  9. Itoh H, Watanabe Y, Mori K et al (2003) Synthesis of dimethyl carbonate by vapor phase oxidative carbonylation of methanol. Green Chem 5:558–562

    Article  CAS  Google Scholar 

  10. Jiang RX, Wang SF, Zhao XQ et al (2003) The effects of promoters on catalytic properties and deactivation-regeneration of the catalyst in the synthesis of dimethyl carbonate. Appl Catal A Gen 238:131–139

    Article  CAS  Google Scholar 

  11. Briggs DN, Bong G, Leong E et al (2010) Effects of support composition and pretreatment on the activity and selectivity of carbon-supported PdCunClx catalysts for the synthesis of diethyl carbonate. J Catal 276:215–228

    Article  CAS  Google Scholar 

  12. Sato Y, Souma Y (2000) Novel type of heterogenized CuCl2 catalytic systems for oxidative carbonylation of methanol. Catal Surv Jpn 4:65–74

    Article  CAS  Google Scholar 

  13. King ST (1997) Oxidative carbonylation of methanol to dimethyl carbonate by solid-state ion-exchanged CuY catalysts. Catal Today 33:173–182

    Article  CAS  Google Scholar 

  14. Richter M, Fait MJG, Eckelt R et al (2007) Gas-phase carbonylation of methanol to dimethyl carbonate on chloride-free Cu-precipitated zeolite Y at normal pressure. J Catal 245:11–24

    Article  CAS  Google Scholar 

  15. Drake IJ, Zhang YH, Briggs D et al (2006) The local environment of Cu+ in Cu-Y zeolite and its relationship to the synthesis of dimethyl carbonate. J Phys Chem B 110:11654–11664

    Article  CAS  Google Scholar 

  16. Li Z, Wang RY, Zheng HY et al (2010) Preparation of CuIY catalyst using CuCl2 as precursor for vapor phase oxidative carbonylation of methanol to dimethyl carbonate. Fuel 89:1339–1343

    Article  CAS  Google Scholar 

  17. Drake IJ, Fujdala KL, Bell AT (2005) Dimethyl carbonate production via the oxidative carbonylation of methanol over Cu/SiO2 catalysts prepared via molecular precursor grafting and chemical vapor deposition approaches. J Catal 230:14–27

    Article  CAS  Google Scholar 

  18. Richter M, Fait MJG, Eckelt R et al (2007) Oxidative gas phase carbonylation of methanol to dimethyl carbonate over chloride-free Cu-impregnated zeolite Y catalysts at elevated pressure. Appl Catal B Environ 73:269–281

    Article  CAS  Google Scholar 

  19. Huang SY, Zhang JJ, Wang Y et al (2014) Insight into the tunable CuY catalyst for diethyl carbonate by oxycarbonylation: preparation methods and precursors. Ind Eng Chem Res 53:5838–5845

    Article  CAS  Google Scholar 

  20. Zheng HY, Qi J, Zhang RG et al (2014) Effect of environment around the active center Cu+ species on the catalytic activity of CuY zeolites in dimethyl carbonate synthesis: a theoretical study. Fuel Process Technol 128:310–318

    Article  CAS  Google Scholar 

  21. Dang TTH, Bartoszek M, Schneider M et al (2012) Chloride-free Cu-modified SAPO-37 catalyst for the oxidative carbonylation of methanol in the gas phase. Appl Catal B Environ 121–122:115–122

    Article  Google Scholar 

  22. Anderson SA, Root TW (2004) Investigation of the effect of carbon monoxide on the oxidative carbonylation of methanol to dimethyl carbonate over Cu+X and Cu+ZSM-5 zeolites. J Mol Catal A Chem 220:247–255

    Article  CAS  Google Scholar 

  23. Zhang YH, Briggs DN, Smit E et al (2007) Effects of zeolite structure and composition on the synthesis of dimethyl carbonate by oxidative carbonylation of methanol on Cu-exchanged Y, ZSM-5, and Mordenite. J Catal 251:443–452

    Article  CAS  Google Scholar 

  24. Huang SY, Wang Y, Wang ZZ et al (2012) Cu-doped zeolites for catalytic oxidative carbonylation: the role of Brønsted acids. Appl Catal A Gen 417–418:236–242

    Article  Google Scholar 

  25. Zhang PB, Huang SY, Yang Y et al (2010) Effect of SSIE structure of Cu-exchanged beta and Y on the selectivity for synthesis of diethyl carbonate by oxidative carbonylation of ethanol: a comparative investigation. Catal Today 149:202–206

    Article  CAS  Google Scholar 

  26. Zhang PB, Huang SY, Wang SP et al (2011) Effect of extra-framework silicon on the catalytic activity of Cuβ zeolite catalyst for synthesis of diethyl carbonate by oxidative carbonylation of ethanol. Chem Eng J 172:526–530

    Article  CAS  Google Scholar 

  27. Anderson SA, Manthata S, Root TW (2005) The decomposition of dimethyl carbonate over copper zeolite catalysts. Appl Catal A Gen 280:117–124

    Article  CAS  Google Scholar 

  28. Rebmann G, Keller V, Ledoux MJ et al (2008) Cu-Y zeolite supported on silicon carbide for the vapour phase oxidative carbonylation of methanol to dimethyl carbonate. Green Chem 10:207–213

    Article  CAS  Google Scholar 

  29. Zhang Z, Ma XB, Zhang J et al (2005) Effect of crystal structure of copper species on the rate and selectivity in oxidative carbonylation of ethanol for diethyl carbonate synthesis. J Mol Catal A Chem 227:141–146

    Article  CAS  Google Scholar 

  30. King ST (1996) Reaction mechanism of oxidative carbonylation of methanol to dimethyl carbonate in Cu-Y Zeolite. J Catal 161:530–538

    Article  CAS  Google Scholar 

  31. Anderson SA, Root TW (2003) Kinetic studies of carbonylation of methanol to dimethyl carbonate over Cu+X zeolite catalyst. J Catal 217:396–405

    Article  CAS  Google Scholar 

  32. Zhang YH, Bell AT (2008) The mechanism of dimethyl carbonate synthesis on Cu-exchanged zeolite Y. J Catal 255:153–161

    Article  CAS  Google Scholar 

  33. Zheng XB, Bell AT (2008) A theoretical investigation of dimethyl carbonate synthesis on Cu-Y zeolite. J Phys Chem C 112:5043–5047

    Article  CAS  Google Scholar 

  34. Shen YL, Wang SP, Huang S et al (2014) DFT investigations of the reaction mechanism of diethyl carbonate synthesis catalyzed by Cu(I)/β or Pd(II)/β zeolites. Appl Surf Sci 308:237–246

    Article  CAS  Google Scholar 

  35. Engeldinger J, Domke C, Richter M et al (2010) Elucidating the role of Cu species in the oxidative carbonylation of methanol to dimethyl carbonate on CuY: an in situ spectroscopic and catalytic study. Appl Catal A Gen 382:303–311

    Article  CAS  Google Scholar 

  36. Engeldinger J, Richter M, Bentrup U (2012) Mechanistic investigations on dimethyl carbonate formation by oxidative carbonylation of methanol over a CuY zeolite: an operando SSITKA/DRIFTS/MS study. Phys Chem Chem Phys 14:2183–2191

    Article  CAS  Google Scholar 

  37. Briggs DN, Lawrence KH, Bell AT (2009) An investigation of carbon-supported CuCl2/PdCl2 catalysts for diethyl carbonate synthesis. Appl Catal A Gen 366:71–83

    Article  CAS  Google Scholar 

  38. Yan B, Huang SY, Meng QS et al (2013) Ordered mesoporous carbons supported Wacker-type catalyst for catalytic oxidative carbonylation. AICHE J 59:3797–3805

    Article  CAS  Google Scholar 

  39. Wang YJ, Jiang RX, Zhao XQ et al (2000) Synthesis of dimethyl carbonate by gas-phase oxidative carbonylation of methanol over activated carbon-supported copper catalysts. J Nat Gas Chem 9:205–211

    CAS  Google Scholar 

  40. Wang RY, Li Z, Zheng HY et al (2010) Preparation of chlorine-free Cu/AC catalyst and its catalytic properties for vapor phase oxidative carbonylation of methanol. Chin J Catal 31:851–856

    CAS  Google Scholar 

  41. Li Z, Zhu QF, Wang RY et al (2011) Cu supported on activated carbon catalyst prepared by hydrazine hydrate reduction for catalyzing oxidative carbonylation of methanol. Chin J Inorg Chem 27:718–724

    Google Scholar 

  42. Zheng HY, Qin Y, Li Z et al (2014) Copper states in Cu/AC catalyst during gas-phase oxidative carbonylation of methanol to dimethyl carbonate. Chin J Inorg Chem 30:2111–2118

    CAS  Google Scholar 

  43. Zheng HY, Guo TY, Li Z et al (2013) Effect of impregnation strategy on structure and catalytic performance of CuCe/AC catalyst. Chin J Inorg Chem 29:2575–2581

    CAS  Google Scholar 

  44. Ren J, Wang DL, Pei YL et al (2013) Effect of lithium content on the structural properties and catalytic activities of CuLi/AC catalysts in the oxidative carbonylation of methanol to dimethyl carbonate. Chem J Chin Univ 34:2594–2600

    CAS  Google Scholar 

  45. Yan B, Huang SY, Wang SP et al (2014) Catalytic oxidative carbonylation over Cu2O nanoclusters supported on carbon materials: the role of the carbon support. ChemCatChem 6:2671–2679

    Article  CAS  Google Scholar 

  46. Li Z, Wen CM, Zheng HY et al (2010) Effects of the active carbon surface properties on the structure and catalytic activity of Cu2O/AC catalyst. Chem J Chin Univ 31:145–152

    Article  Google Scholar 

  47. Ren J, Guo CJ, Yang LL et al (2013) Synthesis of dimethyl carbonate over starch-based carbon-supported Cu nanoparticles catalysts. Chin J Catal 34:1734–1744

    Article  CAS  Google Scholar 

  48. Zhang RG, Liu HY, Zheng HY et al (2011) Adsorption and dissociation of O2 on the Cu2O(1 1 1) surface: thermochemistry, reaction barrier. Appl Surf Sci 257:4787–4794

    Article  CAS  Google Scholar 

  49. Zhang RG, Liu HY, Ling LX et al (2011) A DFT study on the formation of CH3O on Cu2O(111) surface by CH3OH decomposition in the absence or presence of oxygen. Appl Surf Sci 257:4232–4238

    Article  CAS  Google Scholar 

  50. Zhang RG, Song LZ, Wang BJ et al (2012) A density functional theory investigation on the mechanism and kinetics of dimethyl carbonate formation on Cu2O catalyst. J Comput Chem 33:1101–1110

    Article  CAS  Google Scholar 

  51. Ren J, Wang W, Wang DL et al (2014) A theoretical investigation on the mechanism of dimethyl carbonate formation on Cu/AC catalyst. Appl Catal A Gen 472:47–52

    Article  CAS  Google Scholar 

  52. Yamamoto Y, Matsuzaki T, Tanaka S et al (1997) Catalysis and characterization of Pd/NaY for dimethyl carbonate synthesis from methyl nitrite and CO. J Chem Soc Faraday Trans 93:3721–3727

    Article  CAS  Google Scholar 

  53. Zhuo GL, Jiang XZ (2002) Catalytic decomposition of methyl nitrite over supported palladium catalysts in vapor phase. React Kinet Catal Lett 77:219–226

    Article  CAS  Google Scholar 

  54. Zhuo GL, Jiang XZ (2002) An attractive synthetic approach to methyl formate from methanol via methyl nitrite. Catal Lett 80:171–174

    Article  CAS  Google Scholar 

  55. Hao CY, Wang SP, Chen HH et al (2010) Effect of acidity of zeolite on synthesis of dimethyl carbonate via methyl nitrite. Abstr Pap Am Chem Soc 240:1

    Google Scholar 

  56. Dong YY, Huang SY, Wang SP et al (2013) Synthesis of dimethyl carbonate through vapor-phase carbonylation catalyzed by Pd-doped zeolites: interaction of lewis acidic sites and Pd species. ChemCatChem 5:2174–2177

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinbin Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Huang, S., Dong, Y., Wang, S., Ma, X. (2016). Chlorine-Free Catalysis for the Synthesis of Dialkyl Carbonate via Oxidative Carbonylation of Alcohols. In: Tundo, P., He, LN., Lokteva, E., Mota, C. (eds) Chemistry Beyond Chlorine. Springer, Cham. https://doi.org/10.1007/978-3-319-30073-3_7

Download citation

Publish with us

Policies and ethics