Skip to main content

Heterocyclic Synthesis Through C-N Bond Formation with Carbon Dioxide

  • Chapter
  • First Online:
Chemistry Beyond Chlorine

Abstract

Carbon dioxide as renewable and environmentally friendly C1 carbon feedstock, which is in contrast to toxic CO and phosgene, has attracted increasing attention due to its roles as cheap, abundant, and readily available carbon source. Additionally, transition metal-based or organocatalysis capable of activating CO2 for efficient chemical transformation of CO2 with chlorine-free process is appealing from a standpoint of green chemistry and sustainable development. The purpose of this article is to demonstrate the versatile use of CO2 as the alternative carbonyl to phosgene or carbon monoxide in organic synthesis. Herein, we mainly focus on the synthesis of carbonyl-containing value-added chemicals including 2-oxazolidinones and quinazoline-2,4(1H,3H)-diones through C-N bond formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roers R, Verdine GL (2001) Concise enantio- and diastereoselective synthesis of α-hydroxy-α-methyl-β-amino acids. Tetrahedron Lett 42:3563–3565

    Article  CAS  Google Scholar 

  2. Katz SJ, Bergmeier SC (2002) Convenient methods for the hydrolysis of oxazolidinones to vicinal amino alcohols. Tetrahedron Lett 43:557–559

    Article  CAS  Google Scholar 

  3. Jones S, Smanmoo C (2004) N-Phosphoryl oxazolidinones as effective phosphorylating agents. Tetrahedron Lett 45:1585–1588

    Article  CAS  Google Scholar 

  4. Dorow RL, Gingrich DE (1999) A novel, one–pot preparation of N-methyl-α-amino acid dipeptides from oxazolidinones and amino acids. Tetrahedron Lett 40:467–470

    Article  CAS  Google Scholar 

  5. Leroux ML, Le Gall T, Mioskowski C (2001) Enantioselective synthesis of α, α-disubstituted amines from nitroalkenes. Tetrahedron Asymmetry 12:1817–1823

    Article  CAS  Google Scholar 

  6. Evans DA, Ennis MD, Le T et al (1984) Asymmetric acylation reactions of chiral imide enolates. The first direct approach to the construction of chiral β-dicarbonyl synthons. J Am Chem Soc 106:1154–1156

    Article  CAS  Google Scholar 

  7. Evans DA, Chapman KT, Bisaha J (1988) Asymmetric Diels-Alder cycloaddition reactions with chiral α, β-unsaturated N-acyloxazolidinones. J Am Chem Soc 110:1238–1256

    Article  CAS  Google Scholar 

  8. Vara Prasad JVN (2007) New oxazolidinones. Curr Opin Microbiol 10:454–460

    Article  CAS  Google Scholar 

  9. Sibi MP, Renhowe PA (1990) A new nucleophilic alaninol synthon from serine. Tetrahedron Lett 31:7407–7410

    Article  CAS  Google Scholar 

  10. Wilson T (1986) Carbonylation of beta-aminoethanols, diols, and diolamines. J Org Chem 51(15):2977–2981

    Article  Google Scholar 

  11. Gabriele B, Brindisi D, Salerno G et al (2000) Synthesis of 2-oxazolidinones by direct palladium-catalyzed oxidative carbonylation of 2-amino-1-alkanols. Org Lett 2:625–627

    Article  CAS  Google Scholar 

  12. Pridgen LN, Prol J Jr, Alexander B et al (1989) Single-pot reductive conversion of amino acids to their respective 2-oxazolidinones employing trichloromethyl chloroformate as the acylating agent: a multigram synthesis. J Org Chem 54:3231–3233

    Article  CAS  Google Scholar 

  13. Yang ZZ, He LN, Gao J et al (2012) Carbon dioxide utilization with C–N bond formation: carbon dioxide capture and subsequent conversion. Energy Environ Sci 5:6602–6639

    Article  CAS  Google Scholar 

  14. Song QW, Zhao YN, He LN et al (2012) Synthesis of oxazolidinones/polyurethanes from aziridines and CO2. Curr Catal 1:107–124

    Article  CAS  Google Scholar 

  15. Hu J, Ma J, Zhu Q et al (2015) Transformation of atmospheric CO2 catalyzed by protic ionic liquids: efficient synthesis of 2-oxazolidinones. Angew Chem Int Ed 54:5399–5403

    Article  CAS  Google Scholar 

  16. Gu Y, Zhang Q, Duan Z et al (2005) Ionic liquid as an efficient promoting medium for fixation of carbon dioxide: a clean method for the synthesis of 5-methylene-1,3-oxazolidin-2-ones from propargylic alcohols, amines, and carbon dioxide catalyzed by Cu(I) under mild conditions. J Org Chem 70:7376–7380

    Article  CAS  Google Scholar 

  17. Kodaka M, Tomohiro T, Lee AL et al (1989) Carbon dioxide fixation forming oxazolidone coupled with a thiol/Fe4S4 cluster redox system. Chem Commun 25:1479–1481

    Article  Google Scholar 

  18. Kubota Y, Kodaka M, Tomohiro T et al (1993) Formation of cyclic urethanes from amino alcohols and carbon dioxide using phosphorus(III) reagents and halogenoalkanes. J Chem Soc Perkin Trans 1:5–6

    Article  Google Scholar 

  19. Dinsmore CJ, Mercer SP (2004) Carboxylation and mitsunobu reaction of amines to give carbamates: retention vs inversion of configuration is substituent-dependent. Org Lett 6:2885–2888

    Article  CAS  Google Scholar 

  20. Paz J, Pérez-Balado C, Iglesias B et al (2009) Carbonylation with CO2 and phosphorus electrophiles: A convenient method for the synthesis of 2-oxazolidinones from 1,2-amino alcohols. Synlett 2009:395–398

    Google Scholar 

  21. Paz J, Pérez-Balado C, Iglesias B et al (2010) Carbon dioxide as a carbonylating agent in the synthesis of 2-oxazolidinones, 2-oxazinones, and cyclic ureas: scope and limitations. J Org Chem 75:3037–3046

    Article  CAS  Google Scholar 

  22. Nomura R, Yamamoto M, Matsuda H (1987) Preparation of cyclic ureas from carbon dioxide and diamines catalyzed by triphenylstibine oxide. Ind Eng Chem Res 26:1056–1059

    Article  CAS  Google Scholar 

  23. Tominaga KI, Sasaki Y (2002) Synthesis of 2-oxazolidinones from CO2 and 1,2-aminoalcohols catalyzed by n-Bu2SnO. Synlett 2002:307–309

    Google Scholar 

  24. Pulla S, Felton CM, Gartia Y et al (2013) Synthesis of 2-oxazolidinones by direct condensation of 2-aminoalcohols with carbon dioxide using chlorostannoxanes. ACS Sustain Chem Eng 1:309–312

    Article  CAS  Google Scholar 

  25. Sakakura T, Kohno K (2009) The synthesis of organic carbonates from carbon dioxide. Chem Commun 45:1312–1330

    Article  Google Scholar 

  26. Aresta M, Dibenedetto A, Pastore C et al (2008) Cerium(IV)oxide modification by inclusion of a hetero-atom: a strategy for producing efficient and robust nano-catalysts for methanol carboxylation. Catal Today 137:125–131

    Article  CAS  Google Scholar 

  27. Dai WL, Luo SL, Yin SF et al (2009) The direct transformation of carbon dioxide to organic carbonates over heterogeneous catalysts. Appl Catal A 366:2–12

    Article  CAS  Google Scholar 

  28. Juarez R, Corma A, Garcia H (2009) Gold nanoparticles promote the catalytic activity of ceria for the transalkylation of propylene carbonate to dimethyl carbonate. Green Chem 11:949–952

    Article  CAS  Google Scholar 

  29. Juarez R, Concepcion P, Corma A et al (2010) Ceria nanoparticles as heterogeneous catalyst for CO2 fixation by ω-aminoalcohols. Chem Commun 46:4181–4183

    Article  CAS  Google Scholar 

  30. Bhanage BM, Fujita S, Ikushima Y et al (2003) Synthesis of cyclic ureas and urethanes from alkylene diamines and amino alcohols with pressurized carbon dioxide in the absence of catalysts. Green Chem 5:340–342

    Article  CAS  Google Scholar 

  31. Hayao S, Havera HJ, Strycker WG et al (1965) New sedative and hypotensive 3-substituted 2,4(1H,3H)-quinazolinediones. J Med Chem 8:807–811

    Article  CAS  Google Scholar 

  32. Tran TP, Ellsworth EL, Stier MA et al (2004) Synthesis and structural–activity relationships of 3-hydroxyquinazoline-2,4-dione antibacterial agents. Bioorg Med Chem Lett 14:4405–4409

    Article  CAS  Google Scholar 

  33. Boyles DC, Curran TT, Parlett RVIV (2002) Electrophilic N-amination of two quinazoline-2,4-diones using substituted (nitrophenyl)hydroxylamines. Org Process Res Dev 6:230–233

    Article  CAS  Google Scholar 

  34. Russo F, Romeo G, Guccione S et al (1991) A. Pyrimido[5,4-b]indole derivatives. 1. A new class of potent and selective. alpha-1 adrenoceptor ligands. J Med Chem 34:1850–1854

    Article  CAS  Google Scholar 

  35. Andrus MB, Mettath SN, Song C (2002) A modified synthesis of iodoazidoaryl prazosin. J Org Chem 67:8284–8286

    Article  CAS  Google Scholar 

  36. Vorbrueggen H, Krolikiewicz K (1994) Synthesis and structural–activity relationships of 3-hydroxyquinazoline-2,4-dione antibacterial agents. Tetrahedron 50:6549–6558

    Article  Google Scholar 

  37. Michman M, Patai S, Wiesel Y (1978) The synthesis of 2,4[1H,3H]quinazolinedione and some of its 3-aryl substituted derivatives. Org Prep Proced Int 10:13–16

    Article  CAS  Google Scholar 

  38. Li J, Chen X, Shi D et al (2009) A new and facile synthesis of quinazoline-2,4(1H,3H)-diones. Org Lett 11:1193–1196

    Article  CAS  Google Scholar 

  39. Wu X, Yu Z (2010) Metal and phosgene-free synthesis of 1H-quinazoline-2,4-diones by selenium-catalyzed carbonylation of o-nitrobenzamides. Tetrahedron Lett 51:1500–1503

    Article  CAS  Google Scholar 

  40. Aresta M, Dibenedetto A (2004) The contribution of the utilization option to reducing the CO2 atmospheric loading: research needed to overcome existing barriers for a full exploitation of the potential of the CO2 use. Catal Today 98:455–462

    Article  CAS  Google Scholar 

  41. Sakakura T, Choi JC, Yasuda H (2007) Transformation of carbon dioxide. Chem Rev 107:2365–2387

    Article  CAS  Google Scholar 

  42. Aresta M, Dibenedetto A, Angelini A (2014) Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem Rev 114:1709–1742

    Article  CAS  Google Scholar 

  43. Aresta M, Dibenedettob A (2007) Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Trans 2007:2975–2992

    Google Scholar 

  44. Mizuno T, Okamoto N, Ito T et al (2000) Synthesis of 2,4-dihydroxyquinazolines using carbon dioxide in the presence of DBU under mild conditions. Tetrahedron Lett 41:1051–1053

    Article  CAS  Google Scholar 

  45. Mizuno T, Ishino Y (2002) Highly efficient synthesis of 1H-quinazoline-2,4-diones using carbon dioxide in the presence of catalytic amount of DBU. Tetrahedron 58:3155–3158

    Article  CAS  Google Scholar 

  46. Jessop PG, Ikariya T, Noyori R (1999) Homogeneous catalysis in supercritical fluids. Chem Rev 99:475–494

    Article  CAS  Google Scholar 

  47. Baiker A (1999) Supercritical fluids in heterogeneous catalysis. Chem Rev 99:453–474

    Article  CAS  Google Scholar 

  48. Jessop PG, Subramaniam B (2007) Gas-expanded liquids. Chem Rev 107:2666–2694

    Article  CAS  Google Scholar 

  49. Mizuno T, Iwai T, Ishino Y (2004) The simple solvent-free synthesis of 1H-quinazoline-2,4-diones using supercritical carbon dioxide and catalytic amount of base. Tetrahedron Lett 45:7073–7075

    Article  CAS  Google Scholar 

  50. Leow D, Tan CH (2009) Chiral guanidine catalyzed enantioselective reactions. Chem Asian J 4:488–507

    Article  CAS  Google Scholar 

  51. Pereira FS, deAzevedo ER, da Silva EF et al (2008) Study of the carbon dioxide chemical fixation—activation by guanidines. Tetrahedron 64:10097–10106

    Article  CAS  Google Scholar 

  52. Gao J, He LN, Miao CX et al (2010) Chemical fixation of CO2: efficient synthesis of quinazoline-2,4(1H,3H)-diones catalyzed by guanidines under solvent-free conditions. Tetrahedron 66:4063–4067

    Article  CAS  Google Scholar 

  53. Kimura T, Sunaba H, Kamata K et al (2012) Efficient [WO4]2−-catalyzed chemical fixation of carbon dioxide with 2-aminobenzonitriles to quinazoline-2,4(1H,3H)-diones. Inorg Chem 51:13001–13008

    Article  CAS  Google Scholar 

  54. Kimura T, Kamata K, Mizuno N (2012) A bifunctional tungstate catalyst for chemical fixation of CO2 at atmospheric pressure. Angew Chem Int Ed 51:6700–6703

    Article  CAS  Google Scholar 

  55. Xiao Y, Kong X, Xu Z et al (2015) Efficient synthesis of quinazoline-2,4(1H,3H)-diones from CO2 catalyzed by N-heterocyclic carbene at atmospheric pressure. RSC Adv 5:5032–5037

    Article  CAS  Google Scholar 

  56. Gawande MB, Pandey RK, Jayaram RV (2012) Role of mixed metal oxides in catalysis science—versatile applications in organic synthesis. Catal Sci Technol 2:1113–1125

    Article  CAS  Google Scholar 

  57. Trost BM (1991) The atom economy – a search for synthetic efficiency. Science 254:1471–1477

    Article  CAS  Google Scholar 

  58. Nagai D, Endo T (2009) Synthesis of 1H-quinazoline-2,4-diones from 2-aminobenzonitriles by fixation of carbon dioxide with amidine moiety supported polymer at atmospheric pressure. J Polym Sci Part A Polym Chem 47:653–657

    Article  CAS  Google Scholar 

  59. Laurent S, Forge D, Port M et al (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    Article  CAS  Google Scholar 

  60. Zheng X, Luo S, Zhang L et al (2009) Magnetic nanoparticle supported ionic liquid catalysts for CO2 cycloaddition reactions. Green Chem 11:455–458

    Article  CAS  Google Scholar 

  61. Zhao YN, Yu B, Yang ZZ et al (2014) Magnetic base catalysts for the chemical fixation of carbon dioxide to quinazoline-2,4(1H,3H)-diones. RSC Adv 4:28941–28946

    Article  CAS  Google Scholar 

  62. Nale DB, Ranab S, Paridab K et al (2014) Amine functionalized MCM-41: an efficient heterogeneous recyclable catalyst for the synthesis of quinazoline-2,4(1H,3H)-diones from carbon dioxide and 2-aminobenzonitriles in water. Catal Sci Technol 4:1608–1614

    Article  CAS  Google Scholar 

  63. Patil YP, Tambade PJ, Parghi KD et al (2009) Synthesis of quinazoline-2,4(1H,3H)-diones from carbon dioxide and 2-aminobenzonitriles using MgO/ZrO2 as a solid base catalyst. Catal Lett 133:201–208

    Article  CAS  Google Scholar 

  64. Patil YP, Tambade PJ, Jagtap SR et al (2008) Cesium carbonate catalyzed efficient synthesis of quinazoline-2,4(1H,3H)-diones using carbon dioxide and 2-aminobenzonitriles. Green Chem Lett Rev 1:127–132

    Article  CAS  Google Scholar 

  65. Jutz F, Andanson JM, Baiker A (2011) Ionic liquids and dense carbon dioxide: a beneficial biphasic system for catalysis. Chem Rev 111:322–353

    Article  CAS  Google Scholar 

  66. Patil YP, Tambade PJ, Deshmukh KM et al (2009) Synthesis of quinazoline-2,4(1H,3H)-diones from carbon dioxide and 2-aminobenzonitriles using [Bmim]OH as a homogeneous recyclable catalyst. Catal Today 148:355–360

    Article  CAS  Google Scholar 

  67. Lu W, Ma J, Hu J et al (2014) Efficient synthesis of quinazoline-2,4(1H,3H)-diones from CO2 using ionic liquids as a dual solvent–catalyst at atmospheric pressure. Green Chem 16:221–225

    Article  CAS  Google Scholar 

  68. Kagimoto J, Fukumoto K, Ohno H (2006) Effect of tetrabutylphosphonium cation on the physico-chemical properties of amino-acid ionic liquids. Chem Commun 42:2254–2256

    Article  Google Scholar 

  69. Lang XD, Zhang S, Song QW et al (2015) Tetra-butylphosphonium arginine-based ionic liquid-promoted cyclization of 2-aminobenzonitrile with carbon dioxide. RSC Adv 5:15668–15673

    Article  CAS  Google Scholar 

  70. Zhao YF, Yu B, Yang ZZ et al (2014) A protic ionic liquid catalyzes CO2 conversion at atmospheric pressure and room temperature: synthesis of quinazoline-2,4-(1H,3H)-diones. H Angew Chem Int Ed 53:5922–5925

    Article  CAS  Google Scholar 

  71. Jessop PG, Heldebrant DJ, Li XW et al (2005) Green chemistry: reversible nonpolar-to-polar solvent. Nature 436:1102–1102

    Article  CAS  Google Scholar 

  72. Zheng H, Cao X, Du K et al (2014) A highly efficient way to capture CX2 (O, S) mildly in reusable ReILs at atmospheric pressure. Green Chem 16:3142–3148

    Article  CAS  Google Scholar 

  73. Li CJ, Chen L (2006) Organic reactions in water. Chem Soc Rev 35:68–82

    Article  Google Scholar 

  74. Li CJ (1993) Organic reactions in aqueous media with a focus on C-C bond formations. Chem Rev 93:2023–2035

    Article  CAS  Google Scholar 

  75. Lu W, Ma J, Hu J et al (2014) Choline hydroxide promoted chemical fixation of CO2 to quinazoline-2,4(1H,3H)-diones in water. RSC Adv 4:50993–50997

    Article  CAS  Google Scholar 

  76. Ma J, Han B, Song J et al (2013) Efficient synthesis of quinazoline-2,4(1H,3H)-diones from CO2 and 2-aminobenzonitriles in water without any catalyst. Green Chem 15:1485–1489

    Article  CAS  Google Scholar 

  77. Ma J, Hu J, Lu W et al (2013) Theoretical study on the reaction of CO2 and 2-aminobenzonitrile to form quinazoline-2,4(1H,3H)-dione in water without any catalyst. Phys Chem Chem Phys 15:17333–17341

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang-Nian He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Song, QW., He, LN. (2016). Heterocyclic Synthesis Through C-N Bond Formation with Carbon Dioxide. In: Tundo, P., He, LN., Lokteva, E., Mota, C. (eds) Chemistry Beyond Chlorine. Springer, Cham. https://doi.org/10.1007/978-3-319-30073-3_16

Download citation

Publish with us

Policies and ethics