Skip to main content

Halide-Free Synthesis of Cyclic and Polycarbonates

  • Chapter
  • First Online:
Chemistry Beyond Chlorine

Abstract

The 100 % atom-economical reaction between epoxides and carbon dioxide to give either cyclic carbonates or polymers is extremely attractive as part of the process of establishing more sustainable material and chemical industries in the future. Cyclic carbonates are already recognised as non-toxic polar aprotic solvents and chemical intermediates and are widely used as electrolytes for lithium-ion batteries. Polycarbonates prepared via this route have a great deal of potential, both as replacements for conventional polycarbonates and as polyols for the production of polyurethanes. Here, we highlight some of the more sustainable catalytic systems for each reaction, focusing on those with good activity which do not require the use of halides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104:4303–4417. doi:10.1021/cr030203g

    Article  CAS  Google Scholar 

  2. Schäffner B, Schäffner F, Verevkin SP, Börner A (2010) Organic carbonates as solvents in synthesis and catalysis. Chem Rev 110:4554–4581. doi:10.1021/cr900393d

    Article  Google Scholar 

  3. Bennett RE, Bennett GS, Craton MA, Chou SH (2003) Digital versatile discs(DVD) that include two polycarbonate substrates bonded together through an adhesive includes a polymer which is an N-vinyl caprolactam or N-vinyl imidazole or N-vinyl pyrrolidone and an acrylic ester monomer. US6599602 B2, 29 July 2003

    Google Scholar 

  4. Bayha CE, Sudlow HA (1995) Sheets joined with an addition-condensation crosslinked polyester copolymer adhesive; low temperature curing, solvent-free. US Patent 5445890 A

    Google Scholar 

  5. Comerford JW, Ingram IDV, North M, Wu X (2015) Sustainable metal-based catalysts for the synthesis of cyclic carbonates containing five-membered rings. Green Chem. doi:10.1039/c4gc01719f

    Google Scholar 

  6. Martín C, Fiorani G, Kleij AW (2015) Recent advances in the catalytic preparation of cyclic organic carbonates. ACS Catal 5(2):1353–1370. doi:10.1021/cs5018997

    Article  Google Scholar 

  7. Fiorani G, Guo W, Kleij AW (2014) Sustainable conversion of carbon dioxide: the advent of organocatalysis. Green Chem. doi:10.1039/c4gc01959h

    Google Scholar 

  8. Coates GW, Moore DR (2004) Discrete metal-based catalysts for the copolymerization of CO2 and epoxides: discovery, reactivity, optimization, and mechanism. Angew Chem Int Ed 43(48):6618–6639. doi:10.1002/anie.200460442

    Article  CAS  Google Scholar 

  9. Klaus S, Lehenmeier MW, Anderson CE, Rieger B (2011) Recent advances in CO2/epoxide copolymerization—new strategies and cooperative mechanisms. Coord Chem Rev 255(13–14):1460–1479. doi:10.1016/j.ccr.2010.12.002

    Article  CAS  Google Scholar 

  10. Sugimoto H, Inoue S (2006) Recent progress in the synthesis of polymers based on carbon dioxide. Pure Appl Chem 78(10). doi:10.1351/pac200678101823

    Google Scholar 

  11. Shen Y-M, Duan W-L, Shi M (2003) Phenol and organic bases co-catalyzed chemical fixation of carbon dioxide with termial epoxides to form cyclic carbonates. Adv Synth Catal 345:337–340

    Article  CAS  Google Scholar 

  12. Shen Y-M, Duan W-L, Shi M (2004) Chemical fixation of carbon dioxide co-catalyzed by a combination of schiff bases or phenols and organic bases. Eur J Org Chem 2004(14):3080–3089. doi:10.1002/ejoc.200400083

    Article  Google Scholar 

  13. Sankar M, Tarte NH, Manikandan P (2004) Effective catalytic system of zinc-substituted polyoxometalate for cycloaddition of CO2 to epoxides. Appl Catal A Gen 276(1–2):217–222. doi:10.1016/j.apcata.2004.08.008

    Article  CAS  Google Scholar 

  14. Shiels RA, Jones CW (2007) Homogeneous and heterogeneous 4-(N, N-dialkylamino)pyridines as effective single component catalysts in the synthesis of propylene carbonate. J Mol Catal A Chem 261(2):160–166. doi:10.1016/j.molcata.2006.08.002

    Article  CAS  Google Scholar 

  15. Sankar M, Ajithkumar TG, Sankar G, Manikandan P (2015) Supported imidazole as heterogeneous catalyst for the synthesis of cyclic carbonates from epoxides and CO2. Catal Commun 59:201–205. doi:10.1016/j.catcom.2014.10.026

    Article  CAS  Google Scholar 

  16. Barbarini A, Maggi R, Mazzacani A, Mori G, Sartori G, Sartorio R (2003) Cycloaddition of CO2 to epoxides over both homogeneous and silica-supported guanidine catalysts. Tetrahedron Lett 44(14):2931–2934. doi:10.1016/s0040-4039(03)00424-6

    Article  CAS  Google Scholar 

  17. Villiers C, Dognon JP, Pollet R, Thuery P, Ephritikhine M (2010) An isolated CO2 adduct of a nitrogen base: crystal and electronic structures. Angew Chem Int Ed 49(20):3465–3468. doi:10.1002/anie.201001035

    Article  CAS  Google Scholar 

  18. Zhang X, Zhao N, Wei W, Sun Y (2006) Chemical fixation of carbon dioxide to propylene carbonate over amine-functionalized silica catalysts. Catal Today 115(1–4):102–106. doi:10.1016/j.cattod.2006.02.028

    Article  CAS  Google Scholar 

  19. Sun J, Cheng W, Yang Z, Wang J, Xu T, Xin J, Zhang S (2014) Superbase/cellulose: an environmentally benign catalyst for chemical fixation of carbon dioxide into cyclic carbonates. Green Chem 16(6):3071–3078. doi:10.1039/C3GC41850B

    Article  CAS  Google Scholar 

  20. Jiang H, Qi C, Wang Z, Zou B, Yang S (2007) Naturally occurring α-amino acid catalyzed coupling of carbon dioxide with epoxides to afford cyclic carbonates. Synlett 2007(2):0255–0258. doi:10.1055/s-2007-968024

    Article  Google Scholar 

  21. Qi C, Jiang H (2010) Histidine-catalyzed synthesis of cyclic carbonates in supercritical carbon dioxide. Sci China Chem 53(7):1566–1570. doi:10.1007/s11426-010-4019-7

    Article  CAS  Google Scholar 

  22. Tharun J, Roshan KR, Kathalikkattil AC, Kang D-H, Ryu H-M, Park D-W (2014) Natural amino acids/H2O as a metal- and halide-free catalyst system for the synthesis of propylene carbonate from propylene oxide and CO2 under moderate conditions. RSC Adv 4(78):41266–41270. doi:10.1039/c4ra06964a

    Article  CAS  Google Scholar 

  23. Qi C, Ye J, Zeng W, Jiang H (2010) Polystyrene-supported amino acids as efficient catalyst for chemical fixation of carbon dioxide. Adv Synth Catal 352(11–12):1925–1933. doi:10.1002/adsc.201000261

    Article  CAS  Google Scholar 

  24. Tsutsumi Y, Yamakawa K, Yoshida M, Ema T, Sakai T (2010) Bifunctional organocatalysts for activition of carbon dioxde and epoxide to producr cyclic carbonate: betaine as a new catalytic motif. Org Lett 12:5728–5731

    Article  CAS  Google Scholar 

  25. Sun J, S-i F, Arai M (2005) Development in the green synthesis of cyclic carbonate from carbon dioxide using ionic liquids. J Organomet Chem 690(15):3490–3497. doi:10.1016/j.jorganchem.2005.02.011

    Article  CAS  Google Scholar 

  26. Sakakura T, Choi J-C, Yasuda H (2007) Transformation of carbon dioxide. Chem Rev 107:2365–2387. doi:10.1021/cr068357u

    Article  CAS  Google Scholar 

  27. Girard A-L, Simon N, Zanatta M, Marmitt S, Gonçalves P, Dupont J (2014) Insights on recyclable catalytic system composed of task-specific ionic liquids for the chemical fixation of carbon dioxide. Green Chem 16(5):2815. doi:10.1039/c4gc00127c

    Article  CAS  Google Scholar 

  28. Yang Z-Z, He L-N, Miao C-X, Chanfreau S (2010) Lewis basic ionic liquids-catalyzed conversion of carbon dioxide to cyclic carbonates. Adv Synth Catal 352(13):2233–2240. doi:10.1002/adsc.201000239

    Article  CAS  Google Scholar 

  29. Wu F, Dou X-Y, He L-N, Miao C-X (2009) Natural amino acid-based ionic liquids as efficient catalysts for the synthesis of cyclic carbonates from CO2 and epoxides under solvent-free conditions. Lett Org Chem 7:73–78

    Article  Google Scholar 

  30. Zhou H, Zhang W-Z, Cui-Hua L, Qu J-P, Lu X-B (2008) CO2 adducts of N-heterocyclic carbenes: thermal stability and catalytic activity toward the coupling of CO2 with epoxides. J Org Chem 73:8039–8044. doi:10.1021/jo801457r

    Article  CAS  Google Scholar 

  31. Kayaki Y, Yamamoto M, Ikariya T (2009) N-heterocyclic carbenes as efficient organocatalysts for CO2 fixation reactions. Angew Chem Int Ed 48(23):4194–4197. doi:10.1002/anie.200901399

    Article  CAS  Google Scholar 

  32. Kawanami H, Ikushima Y (2000) Chemical fixation of carbon dioxide to styrene carbonate under supercritical conditions with DMF in the absence of any additional catalysts. Chem Commun 21:2089–2090. doi:10.1039/b006682f

    Article  Google Scholar 

  33. Jiang JL, Hua R (2006) Efficient DMF‐catalyzed coupling of epoxides with CO2 under solvent‐free conditions to afford cyclic carbonates. Synth Commun 36(21):3141–3148. doi:10.1080/00397910600908744

    Article  CAS  Google Scholar 

  34. Yano T, Matsui H, Koike T, Ishiguro H, Fujihara H, Yoshihara M, Maeshima T (1997) Magnesium oxide-catalysed reaction of carbon dioxide with an epoxide with retention of stereochemistry. Chem Commun 1997:1129–1130

    Article  Google Scholar 

  35. Yamaguchi K, Ebitani K, Yoshida T, Yoshida H, Kaneda K (1999) Mg-Al mixed oxides as highly active acid–base catalysts for cycloaddition of carbon dioxide to epoxides. J Am Chem Soc 121:4526–4527

    Article  CAS  Google Scholar 

  36. Ghosh A, Ramidi P, Pulla S, Sullivan SZ, Collom SL, Gartia Y, Munshi P, Biris AS, Noll BC, Berry BC (2010) Cycloaddition of CO2 to epoxides using a highly active Co(III) complex of tetraamidomacrocyclic ligand. Catal Lett 137(1–2):1–7. doi:10.1007/s10562-010-0325-0

    Article  CAS  Google Scholar 

  37. Ramidi P, Sullivan SZ, Gartia Y, Munshi P, Griffin WO, Darsey JA, Biswas A, Shaikh AU, Ghosh A (2011) Catalytic cyclic carbonate synthesis using epoxide and carbon dioxide: combined catalytic effect of both cation and anion of an ionic CrV(O) amido macrocyclic complex. Ind Eng Chem Res 50(13):7800–7807. doi:10.1021/ie2003939

    Article  CAS  Google Scholar 

  38. Kruper WJ, Dellar DV (1995) Catalytic formation of cyclic carbonates from epoxides and CO2 with chromium metalloporphyrinates. J Chem 60:725–727

    CAS  Google Scholar 

  39. Man ML, Lam KC, Sit WN, Ng SM, Zhou Z, Lin Z, Lau CP (2006) Synthesis of heterobimetallic Ru-Mn complexes and the coupling reactions of epoxides with carbon dioxide catalyzed by these complexes. Chem Eur J 12(4):1004–1015. doi:10.1002/chem.200500780

    Article  CAS  Google Scholar 

  40. Mori K, Mitani Y, Hara T, Mizugaki T, Ebitani K, Kaneda K (2005) A single-site hydroxyapatite-bound zinc catalyst for highly efficient chemical fixation of carbon dioxide with epoxides. Chem Commun 26:3331–3333. doi:10.1039/b502636a

    Article  Google Scholar 

  41. Adolph M, Zevaco TA, Altesleben C, Walter O, Dinjus E (2014) New cobalt, iron and chromium catalysts based on easy-to-handle N4-chelating ligands for the coupling reaction of epoxides with CO2. Dalton Trans 43(8):3285–3296. doi:10.1039/c3dt53084a

    Article  CAS  Google Scholar 

  42. Castro-Osma JA, North M, Wu X (2014) Development of a halide-free aluminium-based catalyst for the synthesis of cyclic carbonates from epoxides and carbon dioxide. Chem Eur J 20(46):15005–15008. doi:10.1002/chem.201404117

    Article  CAS  Google Scholar 

  43. Zhang S, Huang Y, Jing H, Yao W, Yan P (2009) Chiral ionic liquids improved the asymmetric cycloaddition of CO2 to epoxides. Green Chem 11(7):935. doi:10.1039/b821513h

    Article  Google Scholar 

  44. Inoue S, Koinuma H, Tsuruta T (1969) Copolymerization of carbon dioxide and epoxide. J Polym Sci Polym Phys 7(4):287–292. doi:10.1002/pol.1969.110070408

    CAS  Google Scholar 

  45. Hunt A, Kraus GA, Clark JH (2013) Element recovery and sustainability. Royal Society of Chemistry. doi:10.1039/9781849737340

    Google Scholar 

  46. Kuran W, Listos T (1994) Initiation and propagation reactions in the copolymerization of epoxide with carbon-dioxide by catalysts based on diethylzinc and polyhydric phenol. Macromol Chem 195(3):977–984. doi:10.1002/macp.1994.021950314

    Article  CAS  Google Scholar 

  47. Soga K, Imai E, Hattori I (1981) Alternating copolymerization of CO2 and propylene oxide with the catalysts prepared from Zn(OH)2 and various dicarboxylic acids. Polym J 13(4):407–410. doi:10.1295/polymj.13.407

    Article  CAS  Google Scholar 

  48. Ree M, Bae JY, Jung JH, Shin TJ (1999) A new copolymerization process leading to poly(propylene carbonate) with a highly enhanced yield from carbon dioxide and propylene oxide. J Polym Sci Polym Chem 37(12):1863–1876. doi:10.1002/(SICI)1099-0518(19990615)37:12<1863::AID-POLA16>3.0.CO;2-K

    Google Scholar 

  49. Rokicki A (1990) Making poly(alkylene carbonates) of controlled molecular weight. US Patent 4943677 A, 24 July 1990

    Google Scholar 

  50. Motika SA, Pickering TL, Rokicki A, Stein BK (1991) Zinc glutarate and adipate for making poly(alkylene carbonate). US Patent 5026676 A, 25 June 1991

    Google Scholar 

  51. Meng YZ, Du LC, Tiong SC, Zhu Q, Hay AS (2002) Effects of the structure and morphology of zinc glutarate on the fixation of carbon dioxide into polymer. J Polym Sci Polym Chem 40(21):3579–3591. doi:10.1002/pola.10452

    Article  CAS  Google Scholar 

  52. Zheng YQ, Lin JL, Zhang HL (2000) Crystal structure of zinc glutarate, Zn(C5H6O4). Z Krist-New Cryst Struct 215 (4). doi:10.1515/ncrs-2000-0435

  53. Darensbourg DJ, Stafford NW, Katsurao T (1995) Supercritical carbon dioxide as solvent for the copolymerization of carbon dioxide and propylene oxide using a heterogeneous zinc carboxylate catalyst. J Mol Catal A Chem 104(1):L1–L4. doi:10.1016/1381-1169(95)00142-5

    Article  CAS  Google Scholar 

  54. Wang SJ, Du LC, Zhao XS, Meng YZ, Tjong SC (2002) Synthesis and characterization of alternating copolymer from carbon dioxide and propylene oxide. J Appl Polym Sci 85(11):2327–2334. doi:10.1002/app.10864

    Article  CAS  Google Scholar 

  55. Ree M, Hwang Y, Kim J-S, Kim H, Kim G, Kim H (2006) New findings in the catalytic activity of zinc glutarate and its application in the chemical fixation of CO2 into polycarbonates and their derivatives. Catal Today 115(1–4):134–145. doi:10.1016/j.cattod.2006.02.068

    Article  CAS  Google Scholar 

  56. Wang JT, Zhu Q, Lu XL, Meng YZ (2005) ZnGA–MMT catalyzed the copolymerization of carbon dioxide with propylene oxide. Eur Polym J 41(5):1108–1114. doi:10.1016/j.eurpolymj.2004.11.037

    Article  CAS  Google Scholar 

  57. Carroll WE, Motika SA (1990) Regeneration of metallo-organic catalyst for carbon dioxide-epoxide copolymerization. US Patent 4,960,862, 2 Oct 1990

    Google Scholar 

  58. Darensbourg DJ, Holtcamp MW (1995) Catalytic activity of zinc(II) phenoxides which possess readily accessible coordination sites. Copolymerization and terpolymerization of epoxides and carbon dioxide. Macromolecules 28(22):7577–7579. doi:10.1021/ma00126a043

    Article  CAS  Google Scholar 

  59. Darensbourg DJ, Holtcamp MW, Struck GE, Zimmer MS, Niezgoda SA, Rainey P, Robertson JB, Draper JD, Reibenspies JH (1999) Catalytic activity of a series of Zn(II) phenoxides for the copolymerization of epoxides and carbon dioxide. J Am Chem Soc 121(1):107–116. doi:10.1021/ja9826284

    Article  CAS  Google Scholar 

  60. Darensbourg DJ, Wildeson JR, Yarbrough JC, Reibenspies JH (2000) Bis 2,6-difluorophenoxide dimeric complexes of zinc and cadmium and their phosphine adducts: lessons learned relative to carbon dioxide/cyclohexene oxide alternating copolymerization processes catalyzed by zinc phenoxides. J Am Chem Soc 122(50):12487–12496. doi:10.1021/ja002855h

    Article  CAS  Google Scholar 

  61. Moore DR, Cheng M, Lobkovsky EB, Coates GW (2002) Electronic and steric effects on catalysts for CO2/epoxide polymerization: subtle modifications resulting in superior activities. Angew Chem Int Ed 41(14):2599–2602. doi:10.1002/1521-3773(20020715)41:14<2599::AID-ANIE2599>3.0.CO;2-N

    Google Scholar 

  62. Ellis WC, Jung Y, Mulzer M, Di Girolamo R, Lobkovsky EB, Coates GW (2014) Copolymerization of CO2 and meso epoxides using enantioselective β-diiminate catalysts: a route to highly isotactic polycarbonates. Chem Sci 5(10):4004. doi:10.1039/c4sc01686f

    Article  CAS  Google Scholar 

  63. Byrne CM, Allen SD, Lobkovsky EB, Coates GW (2004) Alternating copolymerization of limonene oxide and carbon dioxide. J Am Chem Soc 126(37):11404–11405. doi:10.1021/ja0472580

    Article  CAS  Google Scholar 

  64. Auriemma F, De Rosa C, Di Caprio MR, Di Girolamo R, Ellis WC, Coates GW (2014) Stereocomplexed poly(limonene carbonate): a unique example of the cocrystallization of amorphous enantiomeric polymers. Angew Chem Int Ed:n/a-n/a. doi:10.1002/anie.201410211

    Google Scholar 

  65. Buchard A, Kember MR, Sandeman KG, Williams CK (2011) A bimetallic iron(III) catalyst for CO2/epoxide coupling. Chem Commun (Cambridge, UK) 47(1):212–214. doi:10.1039/c0cc02205e

    Article  CAS  Google Scholar 

  66. Kember MR, Copley J, Buchard A, Williams CK (2012) Triblock copolymers from lactide and telechelic poly(cyclohexene carbonate). Polym Chem 3(5):1196. doi:10.1039/c2py00543c

    Article  CAS  Google Scholar 

  67. Kember MR, Knight PD, Reung PT, Williams CK (2009) Highly active dizinc catalyst for the copolymerization of carbon dioxide and cyclohexene oxide at one atmosphere pressure. Angew Chem Int Ed Engl 48(5):931–933. doi:10.1002/anie.200803896

    Article  CAS  Google Scholar 

  68. Saini PK, Romain C, Williams CK (2014) Dinuclear metal catalysts: improved performance of heterodinuclear mixed catalysts for CO2-epoxide copolymerization. Chem Commun 50(32):4164–4167. doi:10.1039/C3CC49158G

    Article  CAS  Google Scholar 

  69. Romain DC, Williams CK (2014) Chemoselective polymerization control: from mixed-monomer feedstock to copolymers. Angew Chem Int Ed Engl 53(6):1607–1610. doi:10.1002/anie.201309575

    Article  CAS  Google Scholar 

  70. Winkler M, Romain C, Meier MAR, Williams CK (2015) Renewable polycarbonates and polyesters from 1,4-cyclohexadiene. Green Chem 17(1):300–306. doi:10.1039/c4gc01353k

    Article  CAS  Google Scholar 

  71. Jutz F, Buchard A, Kember MR, Fredriksen SB, Williams CK (2011) Mechanistic investigation and reaction kinetics of the low-pressure copolymerization of cyclohexene oxide and carbon dioxide catalyzed by a dizinc complex. J Am Chem Soc 133(43):17395–17405. doi:10.1021/ja206352x

    Article  CAS  Google Scholar 

  72. Williams CK, Kember MR, Knight PD (2009) Bimetallic catalytic complexes for the copolymerisation of carbon dioxide and an epoxide. World Patent WO 2009/130470 A1, 29 Oct 2009

    Google Scholar 

  73. Kember MR, Williams CK (2012) Efficient magnesium catalysts for the copolymerization of epoxides and CO2; using water to synthesize polycarbonate polyols. J Am Chem Soc 134(38):15676–15679. doi:10.1021/ja307096m

    Article  CAS  Google Scholar 

  74. Cohen CT, Chu T, Coates GW (2005) Cobalt catalysts for the alternating copolymerization of propylene oxide and carbon dioxide: combining high activity and selectivity. J Am Chem Soc 127(31):10869–10878. doi:10.1021/ja051744l

    Article  CAS  Google Scholar 

  75. Cohen CT, Thomas CM, Peretti KL, Lobkovsky EB, Coates GW (2006) Copolymerization of cyclohexene oxide and carbon dioxide using (salen)Co(III) complexes: synthesis and characterization of syndiotactic poly(cyclohexene carbonate). Dalton Trans 1:237–249. doi:10.1039/b513107c

    Article  Google Scholar 

  76. Darensbourg DJ, Chung W-C, Wang K, Zhou H-C (2014) Sequestering CO2 for short-term storage in MOFs: copolymer synthesis with oxiranes. ACS Catal 4(5):1511–1515. doi:10.1021/cs500259b

    Article  CAS  Google Scholar 

  77. Darensbourg DJ, Chung W-C (2014) Availability of other aliphatic polycarbonates derived from geometric isomers of butene oxide and carbon dioxide coupling reactions. Macromolecules 47(15):4943–4948. doi:10.1021/ma501004w

    Article  CAS  Google Scholar 

  78. Cyriac A, Lee SH, Varghese JK, Park ES, Park JH, Lee BY (2010) Immortal CO2/propylene oxide copolymerization: precise control of molecular weight and architecture of various block copolymers. Macromolecules 43(18):7398–7401. doi:10.1021/ma101259k

    Article  CAS  Google Scholar 

  79. Sujith S, Min JK, Seong JE, Na SJ, Lee BY (2008) A highly active and recyclable catalytic system for CO2/propylene oxide copolymerization. Angew Chem Int Ed Engl 47(38):7306–7309. doi:10.1002/anie.200801852

    Article  CAS  Google Scholar 

  80. Jeon JY, Lee JJ, Varghese JK, Na SJ, Sujith S, Go MJ, Lee J, Ok MA, Lee BY (2013) CO2/ethylene oxide copolymerization and ligand variation for a highly active salen-cobalt(III) complex tethering 4 quaternary ammonium salts. Dalton Trans 42(25):9245–9254. doi:10.1039/c2dt31854g

    Article  CAS  Google Scholar 

  81. Liu J, Ren W-M, Liu Y, Lu X-B (2013) Kinetic study on the coupling of CO2and epoxides catalyzed by Co(III) complex with an inter- or intramolecular nucleophilic cocatalyst. Macromolecules 46(4):1343–1349. doi:10.1021/ma302580s

    Article  CAS  Google Scholar 

  82. Koinuma H, Hirai H (1977) Copolymerization of carbon dioxide and some oxiranes by organoaluminium catalysts. Makromol Chem 178(5):1283–1294. doi:10.1002/macp.1977.021780507

    Article  CAS  Google Scholar 

  83. Zevaco TA, Janssen A, Sypien J, Dinjus E (2005) Aluminium triisopropoxide: an inexpensive and easy-to-handle catalyst of the copolymerisation of cyclohexene oxide with CO2. Green Chem 7(9):659. doi:10.1039/b504798f

    Article  CAS  Google Scholar 

  84. Zevaco TA, Sypien J, Janssen A, Walter O, Dinjus E (2006) Aluminum bisphenoxides: promising challengers for a catalyzed copolymerization of cyclohexene oxide with CO2. Catal Today 115(1–4):151–161. doi:10.1016/j.cattod.2006.02.072

    Article  CAS  Google Scholar 

  85. Ikpo N, Barbon SM, Drover MW, Dawe LN, Kerton FM (2012) Aluminum methyl and chloro complexes bearing monoanionic aminephenolate ligands: synthesis, characterization, and use in polymerizations. Organometallics 31(23):8145–8158. doi:10.1021/om300757u

    Article  CAS  Google Scholar 

  86. Sugimoto H, Ohtsuka H, Inoue S (2005) Alternating copolymerization of carbon dioxide and epoxide catalyzed by an aluminum Schiff base–ammonium salt system. J Polym Sci Polym Chem 43(18):4172–4186. doi:10.1002/pola.20894

    Article  CAS  Google Scholar 

  87. Nishioka K, Goto H, Sugimoto H (2012) Dual catalyst system for asymmetric alternating copolymerization of carbon dioxide and cyclohexene oxide with chiral aluminum complexes: Lewis base as catalyst activator and lewis acid as monomer activator. Macromolecules 45(20):8172–8192. doi:10.1021/ma301696d

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael North .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ingram, I.D.V., North, M., Wu, X. (2016). Halide-Free Synthesis of Cyclic and Polycarbonates. In: Tundo, P., He, LN., Lokteva, E., Mota, C. (eds) Chemistry Beyond Chlorine. Springer, Cham. https://doi.org/10.1007/978-3-319-30073-3_15

Download citation

Publish with us

Policies and ethics