Skip to main content

Synthesis of Carbonate Compounds Using Carbon Dioxide and Carbon Dioxide-Derived Materials

  • Chapter
  • First Online:
Chemistry Beyond Chlorine

Abstract

The chemical transformation of carbon dioxide and carbon dioxide – derived materials such as urea into value-added chemicals may be significant from the viewpoint of green chemistry in replacing harmful reactants such as phosgene and recycling undesired carbon dioxide. The transformation may be achieved by using various catalysts including solid base catalysts, multi-component catalysts, ionic liquid catalysts, and so on, some of which include halogens. Our chapter is to review those catalytic transformation reactions of carbon dioxide and carbon dioxide – derived materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New York

    Google Scholar 

  2. Matlack AS (2001) Introduction to green chemistry. Marcel Dekker, New York

    Google Scholar 

  3. Park SE, Chang JS, Lee KW (eds) (2004) Carbon dioxide utilization for global sustainability. Elsevier, Amsterdam

    Google Scholar 

  4. Suib SL (ed) (2013) New and future developments in catalysis: activation of carbon dioxide. Elsevier, Amsterdam

    Google Scholar 

  5. Bhanage BM, Arai M (eds) (2014) Transformation and utilization of carbon dioxide. Springer, New York

    Google Scholar 

  6. Li R, Tong X, Li X, Hu C (2012) Chlorine-free catalysts for green synthesis of cyclic carbonates from carbon dioxide. Pure Appl Chem 84:621–636

    Article  CAS  Google Scholar 

  7. Tamura M, Honda M, Nakagawa Y et al (2014) Direct conversion of CO2 with diols, amino alcohols and diamines to cyclic carbonates, cyclic carbamates and cyclic ureas using heterogeneous catalysts. J Chem Technol Biotechnol 89:19–33

    Article  CAS  Google Scholar 

  8. Comerford JW, Ingram IDV, North M, Wu X (2015) Sustainable metal-based catalysts for the synthesis of cyclic carbonates containing five-membered rings. Green Chem 17:1966–1987

    Article  CAS  Google Scholar 

  9. Sun J, Fujita S, Arai M (2005) Development in the green synthesis of cyclic carbonate from carbon dioxide using ionic liquids. J Organomet Chem 690:3490–3497

    Article  CAS  Google Scholar 

  10. He Q, O’Brien JW, Kitselman KA, Tompkins LE, Curtis GC, Kerton FM (2014) Synthesis of cyclic carbonates from CO2 and epoxides using ionic liquids and related catalysts including choline chloride-metal halide mixtures. Catal Sci Technol 4:1513–1528

    Article  CAS  Google Scholar 

  11. Bigi F, Maggi R, Sartori G (2000) Selected syntheses of ureas through phosgene substitutes. Green Chem 2:140–148

    Google Scholar 

  12. Yano T, Matsui H, Koike T et al (1997) Magnesium oxide-catalysed reaction of carbon dioxide with an epoxide with retention of stereo chemistry. Chem Commun:1129–1130

    Google Scholar 

  13. Yamaguchi K, Ebitani K, Yoshida T et al (1999) Mg-Al mixed oxides as highly active acid-base catalysts for cycloaddition of carbon dioxide to epoxides. J Am Chem Soc 121:4526–4527

    Article  CAS  Google Scholar 

  14. Dai WL, Yin SF, Guo R et al (2010) Synthesis of propylene carbonate from carbon dioxide and propylene oxide using Zn-Mg-A composite oxide and high-efficiency catalyst. Catal Lett 163:35–44

    Article  CAS  Google Scholar 

  15. Bhanage BM, Fujita S, Ikushima Y et al (2001) Synthesis of dimethyl carbonate and glycols from carbon dioxide, epoxides and methanol using heterogeneous basic metal oxide catalysts with high activity and selectivity. Appl Catal A Gen 219:259–266

    Article  CAS  Google Scholar 

  16. Yasuda H, He LN, Tahahashi T et al (2006) Non-halogen catalysts for propylene carbonate synthesis from CO2 under supercritical conditions. Appl Catal A Gen 298:177–180

    Article  CAS  Google Scholar 

  17. Fujita S, Bhanage BM, Ikushima Y et al (2002) Chemical fixation of carbon dioxide to propylene carbonate using smectite catalysts with high activity and selectivity. Catal Lett 79:95–98

    Article  CAS  Google Scholar 

  18. Bhanage BM, Fujita S, Ikushima Y et al (2003) Synthesis of dimethyl carbonate and glycols from carbon dioxide, epoxides and methanol using heterogeneous Mg containing smectite catalysts: effect of reaction variables on activity and selectivity performance. Green Chem 5:71–75

    Article  CAS  Google Scholar 

  19. Yasuda H, He LN, Sakakura T (2002) Cyclic carbonate synthesis from supercritical carbon dioxide and epoxide over lanthanide oxychloride. J Catal 209:547–550

    Article  CAS  Google Scholar 

  20. Mori K, Mitani Y, Hara T et al (2005) A single-site hydroxyapatite-bound zinc catalyst for highly efficient chemical fixation of carbon dioxide with epoxides. Chem Commun:3331–3333

    Google Scholar 

  21. Sun J, Cheng W, Yang Z et al (2014) Superbase/cellulose: an environmentally benign catalyst for chemical fixation of carbon dioxide into cyclic carbonates. Green Chem 16:3071–3078

    Article  CAS  Google Scholar 

  22. Goettmann F, Fischer A, Antonietti M et al (2006) Chemical synthesis of mesoporous carbon nitrides using hard template and their use as a metal-free catalyst for Friedel-Crafts reaction of benzene. Angew Chem Int Ed 45:4467–4471

    Article  CAS  Google Scholar 

  23. Goettmann F, Thomas A, Antonietti M (2007) Metal-free activation of CO2 by mesoporous graphitic carbon nitride. Angew Chem Int Ed 46:2717–2720

    Article  CAS  Google Scholar 

  24. Goettmann F, Fischer A, Antonietti M et al (2007) Mesoporous graphitic carbon nitride as a versatile, metal-free catalyst for the cyclisation of functional nitriles and alkynes. New J Chem 31:1455–1460

    Article  CAS  Google Scholar 

  25. Jin X, Balasubramanian VV, Selvan ST et al (2009) Highly ordered mesoporous carbon nitride nanoparticles with high nitrogen content: a metal-free basic catalyst. Angew Chem Int Ed 48:7884–7887

    Article  CAS  Google Scholar 

  26. Ansari MB, Min BH, Mo YH et al (2011) CO2 activation and promotional effect in the oxidation of cyclic olefins over mesoporous carbon nitrides. Green Chem 13:1416–1421

    Article  CAS  Google Scholar 

  27. Xu J, Shen K, Xue B et al (2013) Synthesis of three-dimensional mesostructured graphitic carbon nitride materials and their application as heterogeneous catalysts for Knoevenagel condensation reactions. Catal Lett 143:600–609

    Article  CAS  Google Scholar 

  28. Roeser J, Kailaam K, Thomas A (2012) Covalent triazine frameworks as heterogeneous catalysts for the synthesis of cyclic and linear carbonates from carbon dioxide and epoxides. ChemSusChem 5:1793–1799

    Article  CAS  Google Scholar 

  29. Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2083

    Article  CAS  Google Scholar 

  30. Martins MAP, Frizzo CP, Moreira DN et al (2008) Ionic liquids in heterocyclic synthesis. Chem Rev 108:2015–2050

    Article  CAS  Google Scholar 

  31. Jutz F, Andanson JM, Baiker A (2011) Ionic liquids and dense carbon dioxide: a beneficial biphasic system for catalysis. Chem Rev 111:322–353

    Article  CAS  Google Scholar 

  32. Peng J, Deng Y (2001) Cyclization of carbon dioxide to propylene oxide catalyzed by ionic liquids. New J Chem 25:639–641

    Article  CAS  Google Scholar 

  33. Kawanami H, Sasaki A, Matsui K et al (2003) A rapid and effective synthesis of propylene carbonate using a supercritical CO2–ionic liquid system. Chem Commun:896–897

    Google Scholar 

  34. Seki T, Grunwald JD, Baiker A (2009) In situ attenuated total reflection infrared spectroscopy of imidazolium-based room-temperature ionic liquids under supercritical CO2. J Phys Chem B 113:114–122

    Article  CAS  Google Scholar 

  35. Yang ZZ, He LN, Miao CH et al (2010) Lewis basic ionic liquids-catalyzed conversion of carbon dioxide to cyclic carbonates. Adv Synth Catal 352:2233–2240

    Article  CAS  Google Scholar 

  36. Ema T, Fukuhara K, Sakai T et al (2015) Quaternary ammonium hydroxide as a metal-free and halogen-free catalyst for the synthesis of cyclic carbonates from epoxides and carbon dioxide. Catal Sci Technol 5:2314–2321

    Article  CAS  Google Scholar 

  37. Galvan M, Selva M, Perosa A et al (2014) Towards the design of halide- and metal-free ionic-liquid catalysts for the cycloaddition of CO2 to epoxides. Asian J Org Chem 3:504–513

    Article  CAS  Google Scholar 

  38. Chen A, Chen C, Xiu Y et al (2015) Niobate salts of organic base catalyzed chemical fixation of carbon dioxide with epoxides to form cyclic carbonates. Green Chem 17:1842–1852

    Article  CAS  Google Scholar 

  39. Kisch H, Millini R, Wang IJ (1986) Bifunctionelle Katalysatoren zur Synthese cyclischer Carbonate aus Oxiranen und Kohlendioxide. Chem Ber 119:1090–1094

    Article  CAS  Google Scholar 

  40. Li F, Xiao L, Xia C et al (2004) Chemical fixation of CO2 with highly efficient ZnCl2/[BMIm]Br catalyst system. Tetrahedron Lett 45:8307–8310

    Article  CAS  Google Scholar 

  41. Sun J, Fujita S, Zhao F et al (2004) Synthesis of styrene carbonate from styrene oxide and carbon dioxide in the presence of zinc bromide and ionic liquid under mild conditions. Green Chem 6:613–616

    Article  CAS  Google Scholar 

  42. Sun J, Fujita S, Zhao F et al (2004) A highly efficient catalyst system of ZnBr2/n-Bu4NI for the synthesis of styrene carbonate from styrene oxide and supercritical carbon dioxide. Appl Catal A Gen 287:221–226

    Article  CAS  Google Scholar 

  43. Sun J, Ren J, Zhang S et al (2009) Water as an efficient medium for the synthesis of cyclic carbonate. Tetrahedron Lett 50:423–426

    Article  CAS  Google Scholar 

  44. Tomishige T, Yasuda H, Yoshida Y et al (2004) Novel route to propylene carbonate: selective synthesis from propylene glycol and carbon dioxide. Catal Lett 95:45–49

    Article  CAS  Google Scholar 

  45. Tomishige T, Yasuda H, Yoshida Y et al (2004) Catalytic performance and properties of ceria based catalysts for cyclic carbonate synthesis from glycol and carbon dioxide. Green Chem 6:206–214

    Article  CAS  Google Scholar 

  46. Honda M, Tamura M, Nakao K et al (2014) Direct cyclic carbonate synthesis from CO2 and diol over carboxylation/hydration cascade catalyst of CeO2 with 2-cyanopyridine. ACS Catal 4:1893–1896

    Article  CAS  Google Scholar 

  47. Du Y, Kong DL, Wang HY et al (2005) Sn-catalyzed synthesis of propylene carbonate from propylene glycol and CO2 under supercritical conditions. J Mol Catal A Chem 241:233–237

    Article  CAS  Google Scholar 

  48. Huang S, Li S, Li JP et al (2007) Synthesis of propylene carbonate from carbon dioxide and diols over metal acetates. J Fuel Chem Technol 35:701–705

    Article  CAS  Google Scholar 

  49. Ono Y (1997) Dimethyl carbonate for environmentally benign reactions. Catal Today 35:15–25

    Article  CAS  Google Scholar 

  50. Tundo P (2001) New developments in dimethyl carbonate chemistry. Pure Appl Chem 73:1117–1124

    Article  CAS  Google Scholar 

  51. Fujita S, Bhanage BM, Ikushima Y et al (2001) Synthesis of dimethyl carbonate from carbon dioxide and methanol in the presence of methyl iodide and base catalysts under mild conditions: effect of reaction conditions and reaction mechanism. Green Chem 3:87–91

    Article  CAS  Google Scholar 

  52. Sankar M, Satav S, Manikandan P (2010) Transesterification of cyclic carbonates to dimethyl carbonate using solid oxide catalyst at ambient conditions: environmentally benign synthesis. ChemSusChem 3:575–578

    Article  CAS  Google Scholar 

  53. Wakihara M (2001) Recent developments in lithium ion batteries. Mater Sci Eng R33:109–134

    Article  CAS  Google Scholar 

  54. Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104:4303–4417

    Article  CAS  Google Scholar 

  55. Etacheri V, Marom R, Elazari R et al (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262

    Article  CAS  Google Scholar 

  56. Pacheco MA, Marshall CL (1997) Review of dimethyl carbonate (DMC) manufacture and its characteristics as a fuel additive. Energy Fuels 11:2–29

    Google Scholar 

  57. Hao C, Wang S, Ma X (2009) Gas phase decarbonylation of diethyl oxalate to diethyl carbonate over alkali-containing catalyst. J Mol Catal A Chem 306:130–135

    Article  CAS  Google Scholar 

  58. Sakakura T, Saito Y, Okano M et al (1998) Selective conversion of carbon dioxide to dimethyl carbonate by molecular catalysis. J Org Chem 63:7095–7096

    Article  CAS  Google Scholar 

  59. Sakakura T, Choi JC, Saito Y et al (2000) Synthesis of dimethyl carbonate from carbon dioxide: catalysis and mechanism. Polyhedron 19:573–576

    Article  CAS  Google Scholar 

  60. Ballivet-Tkatchenko D, dos Santos JHZ, Philippot K et al (2011) Carbon dioxide conversion to dimethyl carbonate: the effect of silica as support for SnO2 and ZrO2 catalysts. C R Chim 14:780–785

    Article  CAS  Google Scholar 

  61. Aouissi A, Apblett AW, AL-Othman ZA et al (2010) Direct synthesis of dimethyl carbonate from methanol and carbon dioxide using heteropolyoxometalates: the effects of cation and addenda atoms. Transit Met Chem 35:927–931

    Article  CAS  Google Scholar 

  62. Li CF, Zhong SH (2003) Study on application of membrane reactor in direct synthesis DMC from CO2 and CH3OH over Cu-KF/MgSiO catalyst. Catal Today 82:83–90

    Article  CAS  Google Scholar 

  63. Bian J, Xiao M, Wang SJ et al (2009) Novel application of thermally expanded graphite as the support of catalysts for direct synthesis of DMC from CH3OH and CO2. J Colloid Interface Sci 334:50–57

    Article  CAS  Google Scholar 

  64. Bian J, Xiao M, Wang SJ et al (2009) Direct synthesis of DMC from CH3OH and CO2 over V-doped Cu–Ni/AC catalysts. Catal Commun 10:1142–1145

    Article  CAS  Google Scholar 

  65. Wu XL, Meng YZ, Xiao M et al (2006) Direct synthesis of dimethyl carbonate (DMC) using Cu-Ni/VSO as catalyst. J Mol Catal A Chem 249:93–97

    Article  CAS  Google Scholar 

  66. Wang XJ, Xiao M, Wang SJ et al (2007) Direct synthesis of dimethyl carbonate from carbon dioxide and methanol using supported copper (Ni, V, O) catalyst with photo-assistance. J Mol Catal A Chem 278:92–96

    Article  CAS  Google Scholar 

  67. Eta V, Mäki-Arvela P, Wärnå J et al (2011) Kinetics of dimethyl carbonate synthesis from methanol and carbon dioxide over ZrO2–MgO catalyst in the presence of butylene oxide as additive. Appl Catal A Gen 404:39–46

    CAS  Google Scholar 

  68. Wada S, Oka K, Watanabe K et al (2013) Catalytic conversion of carbon dioxide into dimethyl carbonate using reduced copper-cerium oxide catalysts as low as 353 K and 1.3 MPa and the reaction mechanism. Front Chem 1:1–8

    Article  CAS  Google Scholar 

  69. Honda M, Kuno S, Begum N et al (2010) Catalytic synthesis of dialkyl carbonate from low pressure CO2 and alcohols combined with acetonitrile hydration catalyzed by CeO2. Appl Catal A Gen 384:165–170

    Article  CAS  Google Scholar 

  70. Honda M, Kuno S, Sonehara S et al (2011) Tandem carboxylation-hydration reaction system from methanol, CO2 and benzonitrile to dimethyl carbonate and benzamide catalyzed by CeO2. ChemCatChem 3:365–370

    Article  CAS  Google Scholar 

  71. Honda M, Tamura M, Nakagawa Y et al (2013) Ceria-catalyzed conversion of carbon dioxide into dimethyl carbonate with 2-cyanopyridine. ChemSusChem 6:1341–1344

    Article  CAS  Google Scholar 

  72. Honda M, Tamura M, Nakagawa Y et al (2014) Organic carbonate synthesis from CO2 and alcohol over CeO2 with 2-cyanopyridine: scope and mechanistic studies. J Catal 318:95–107

    Article  CAS  Google Scholar 

  73. Honda M, Tamura M, Nakagawa Y et al (2014) Catalytic CO2 conversion to organic carbonates with alcohols in combination with dehydration system. Catal Sci Technol 4:2830–2845

    Article  CAS  Google Scholar 

  74. Wang S, Zhao L, Wang W et al (2013) Morphology control of ceria nanocrystals for catalytic conversion of CO2 with methanol. Nanoscale 5:5582–5588

    Article  CAS  Google Scholar 

  75. Tomishige K, Sakaihori T, Ikeda Y et al (1999) A novel method of direct synthesis of dimethyl carbonate from methanol and carbon dioxide catalyzed by zirconia. Catal Lett 58:225–229

    Article  CAS  Google Scholar 

  76. Lee HJ, Park SY, Song IK et al (2011) Direct synthesis of dimethyl carbonate from methanol and carbon dioxide over Ga2O3/Ce0.6Zr0.4O2 catalysts: effect of acidity and basicity of the catalysts. Catal Lett 141:531–537

    Article  CAS  Google Scholar 

  77. Lee HJ, Joe W, Jung JC et al (2012) Direct synthesis of dimethyl carbonate from methanol and carbon dioxide over Ga2O3-CeO2-ZrO2 catalysts prepared by a single-step sol-gel method: effect of acidity and basicity of the catalysts. Korean J Chem Eng 29:1019–1024

    Article  CAS  Google Scholar 

  78. Zhang ZF, Liu ZW, Lu J et al (2011) Synthesis of dimethyl carbonate from carbon dioxide and methanol over CexZr1-xO2 and [EMIM]Br/Ce0.5Zr0.5O2. Ind Eng Chem Res 50:1981–1988

    Article  CAS  Google Scholar 

  79. Kang KH, Joe W, Lee CH et al (2013) Direct synthesis of dimethyl carbonate from methanol and carbon dioxide over CeO2(X)-ZnO(1-X) Nano-Catalysts. J Nanosci Nanotechnol 13:8116–8120

    Article  CAS  Google Scholar 

  80. Yoshida Y, Arai Y, Kado S et al (2006) Direct synthesis of organic carbonates from the reaction of CO2 with methanol and ethanol over CeO2 catalysts. Catal Today 115:95–101

    Article  CAS  Google Scholar 

  81. Tomishige K, Kunimori K (2002) Catalytic and direct synthesis of dimethyl carbonate starting from carbon dioxide using CeO2-ZrO2 solid solution heterogeneous catalyst: effect of H2O removal from the reaction system. Appl Catal A Gen 237:103–109

    Article  CAS  Google Scholar 

  82. Kohno K, Choi JC, Ohshima Y et al (2008) Synthesis of dimethyl carbonate from carbon dioxide catalyzed by titanium alkoxides with polyether-type ligands. ChemSusChem 1:186–188

    Article  CAS  Google Scholar 

  83. Choi JC, Sakakura T, Sato T (1999) Reaction of dialkyltin methoxide with carbon dioxide relevant to the mechanism of catalytic carbonate synthesis. J Am Chem Soc 121:3793–3794

    Article  CAS  Google Scholar 

  84. Choi JC, He LN, Yasuda H et al (2002) Selective and high yield synthesis of dimethyl carbonate directly from carbon dioxide and methanol. Green Chem 4:230–234

    Article  CAS  Google Scholar 

  85. Unnikrishnan P, Varhadi P, Srinivas D (2013) Efficient, direct synthesis of dimethyl carbonate from CO2 using a solid, calcined zirconium phenylphosphonate phosphite catalyst. RSC Adv 3:23993–23996

    Article  CAS  Google Scholar 

  86. Ju HY, Manju MD, Park DW et al (2007) Performance of ionic liquid as catalysts in the synthesis of dimethyl carbonate from ethylene carbonate and methanol. React Kinet Catal Lett 90:3–9

    Article  CAS  Google Scholar 

  87. Wang JQ, Sun J, Cheng WG et al (2012) Synthesis of dimethyl carbonate catalyzed by carboxylic functionalized imidazolium salt via transesterification reaction. Catal Sci Technol 2:600–605

    Article  CAS  Google Scholar 

  88. Yang ZZ, He LN, Dou XY et al (2010) Dimethyl carbonate synthesis catalyzed by DABCO-derived basic ionic liquids via transesterification of ethylene carbonate with methanol. Tetrahedron Lett 51:2931–2934

    Article  CAS  Google Scholar 

  89. Dharman MM, Ju HY, Shim HL et al (2009) Significant influence of microwave dielectric heating on ionic liquid catalyzed transesterification of ethylene carbonate with methanol. J Mol Catal A Chem 303:96–101

    Article  CAS  Google Scholar 

  90. Watanabe Y, Tatsumi T (1998) Hydrotalcite-type materials as catalysts for the synthesis of dimethyl carbonate from ethylene carbonate and methanol. Microporous Mesoporous Mater 22:399–407

    Article  CAS  Google Scholar 

  91. Unnikrishnan P, Srinivas D (2012) Calcined, rare earth modified hydrotalcite as a solid, reusable catalyst for dimethyl carbonate synthesis. Ind Eng Chem Res 51:6356–6363

    Article  CAS  Google Scholar 

  92. Han MS, Lee BG, Ahn BS et al (2001) Kinetics of dimethyl carbonate synthesis from ethylene carbonate and methanol using alkali-metal compounds as catalysts. React Kinet Catal Lett 73:33–38

    Article  CAS  Google Scholar 

  93. Bhanage BM, Fujita S, He Y et al (2002) Concurrent synthesis of dimethyl carbonate and ethylene glycol via transesterification of ethylene carbonate and methanol using smectite catalysts containing Mg and/or Ni. Catal Lett 83:137–141

    Article  CAS  Google Scholar 

  94. Wang H, Wang M, Liu S et al (2006) Influence of preparation methods on the structure and performance of CaO-ZrO2 catalyst for the synthesis of dimethyl carbonate via transesterification. J Mol Catal A Chem 258:308–312

    Article  CAS  Google Scholar 

  95. Juárez R, Corma A, García H (2009) Gold nanoparticles promote the catalytic activity of ceria for the transalkylation of propylene carbonate to dimethyl carbonate. Green Chem 11:949–952

    Article  CAS  Google Scholar 

  96. Wang L, Wang Y, Liu S et al (2011) Efficient synthesis of dimethyl carbonate via transesterification of ethylene carbonate with methanol over binary zinc-yttrium oxides. Catal Commun 16:45–49

    Article  CAS  Google Scholar 

  97. Adam F, Wong MS (2011) The synthesis of organic carbonates over nanocrystalline CaO prepared via microemulsion technique. Catal Commun 13:87–90

    Article  CAS  Google Scholar 

  98. Dhuri SM, Mahajani VV (2006) Studies in transesterification of ethylene carbonate to dimethyl carbonate over Amberlyst A-21 catalyst. J Chem Technol Biotechnol 81:62–69

    Article  CAS  Google Scholar 

  99. Stoica G, Abelló S, Pérez-Ramírez J (2009) Na-dawsonite derived aluminates for DMC production by transesterification of ethylene carbonate. Appl Catal A Gen 365:252–260

    Article  CAS  Google Scholar 

  100. Xu J, Long KZ, Chen T et al (2013) Mesostructured graphitic carbon nitride as a new base catalyst for the efficient synthesis of dimethyl carbonate by transesterification. Catal Sci Technol 3:3192–3199

    Article  CAS  Google Scholar 

  101. Srivastava R, Srinivas D, Ratnasamy P (2006) Fe–Zn double-metal cyanide complexes as novel, solid transesterification catalysts. J Catal 241:34–44

    Article  CAS  Google Scholar 

  102. Sankar M, Nair CM, Murthy KVGK et al (2006) Transesterification of cyclic carbonates with methanol at ambient conditions over tungstate-based solid catalysts. Appl Catal A Gen 312:108–114

    Article  CAS  Google Scholar 

  103. Kumar P, Srivastava VC, Mishra IM (2015) Synthesis and characterization of Ce-La oxides for the formation of dimethyl carbonate by transesterification of propylene carbonate. Catal Commun 60:27–31

    Article  CAS  Google Scholar 

  104. Jagtap SR, Bhor MD, Bhanage BM (2008) Synthesis of dimethyl carbonate via transesterification of ethylene carbonate with methanol using poly-4-vinyl pyridine as a novel base catalyst. Catal Commun 9:1928–1931

    Article  CAS  Google Scholar 

  105. Xu J, Long KZ, Wu F et al (2014) Efficient synthesis of dimethyl carbonate via transesterification of ethylene carbonate over a new mesoporous ceria catalyst. Appl Catal A Gen 484:1–7

    Article  CAS  Google Scholar 

  106. van Dommele S, de Jong KP, Bitter JH (2006) Nitrogen-containing carbon nanotubes as solid base catalysts. Chem Commun:4859–4861

    Google Scholar 

  107. Kan-nari N, Okamura S, Fujita S et al (2010) Nitrogen-doped carbon materials prepared by ammoxidation as solid base catalysts for Knoevenagel condensation and transesterification reactions. Adv Synth Catal 352:1476–1484

    Article  CAS  Google Scholar 

  108. Fujita S, Yamada K, Katagiri A et al (2014) Nitrogen-doped metal-free carbon catalysts for aerobic oxidation of xanthene. Appl Catal A Gen 488:171–175

    Article  CAS  Google Scholar 

  109. Fujita S, Watanabe H, Katagiri A et al (2014) Nitrogen and oxygen-doped metal-free carbon catalysts for chemoselective transfer hydrogenation of nitrobenzene, styrene, and 3-nitrostyrene with hydrazine. J Mol Catal A Chem 393:257–262

    Article  CAS  Google Scholar 

  110. Watanabe H, Asano S, Fujita S et al (2015) Nitrogen-doped, metal-free activated carbon catalysts for aerobic oxidation of alcohols. ACS Catal 5:2886–2894

    Article  CAS  Google Scholar 

  111. Xu J, Long KZ, Wang Y et al (2015) Fast and facile preparation of metal-doped g-C3N4 composites for catalytic synthesis of dimethyl carbonate. Appl Catal A Gen 496:1–8

    Article  CAS  Google Scholar 

  112. Ball P, Füllmann H, Heitz W (1980) Carbonates and polycarbonates from urea and alcohol. Angew Chem Int Ed 19:718–720

    Article  Google Scholar 

  113. Suciu EN, Kuhlmann B, Knudsen GA et al (1998) Investigation of dialkyltin compounds as catalysts for the synthesis of dialkyl carbonates from alkyl carbamates. J Organomet Chem 556:41–54

    Article  CAS  Google Scholar 

  114. Wang H, Lu B, Wang X et al (2009) Highly selective synthesis of dimethyl carbonate from urea and methanol catalyzed by ionic liquids. Fuel Process Technol 90:1198–1201

    Article  CAS  Google Scholar 

  115. Yang B, Wang D, Lin H et al (2006) Synthesis of dimethyl carbonate from urea and methanol catalyzed by the metallic compounds at atmospheric pressure. Catal Commun 7:472–477

    Article  CAS  Google Scholar 

  116. Wang D, Zhang X, Gao Y et al (2010) Synthesis of dimethyl carbonate from methyl carbamate and methanol over lanthanum compounds. Fuel Process Technol 91:1081–1086

    Article  CAS  Google Scholar 

  117. Sun Y, Yang B, Wang X et al (2005) Synthesis of dimethyl carbonate from urea and methanol using polyphosphoric acid as catalyst. J Mol Catal A Chem 239:82–86

    Article  CAS  Google Scholar 

  118. Zhang C, Lu B, Wang X et al (2012) Selective synthesis of dimethyl carbonate from urea and methanol over Fe2O3/HMCM-49. Catal Sci Technol 2:305–309

    Article  Google Scholar 

  119. Wang M, Wang H, Zhao N et al (2006) Synthesis of dimethyl carbonate from urea and methanol over solid base catalysts. Catal Commun 7:6–10

    Article  CAS  Google Scholar 

  120. Wang M, Zhao N, Wei W et al (2005) Synthesis of dimethyl carbonate from urea and methanol over ZnO. Ind Eng Chem Res 44:7596–7599

    Article  CAS  Google Scholar 

  121. Zhao W, Peng W, Wang D et al (2009) Zinc oxide as the precursor of homogenous catalyst for synthesis of dialkyl carbonate from urea and alcohols. Catal Commun 10:655–658

    Article  CAS  Google Scholar 

  122. Zhao W, Wang F, Peng W et al (2008) Synthesis of dimethyl carbonate from methyl carbamate and methanol with zinc compounds as catalysts. Ind Eng Chem Res 47:5913–5917

    Article  CAS  Google Scholar 

  123. Wang D, Zhang X, Gao Y et al (2010) Zn/Fe mixed oxide: heterogeneous catalyst for the synthesis of dimethyl carbonate from methyl carbamate and methanol. Catal Commun 11:430–433

    Article  CAS  Google Scholar 

  124. Joe W, Lee HJ, Hong UG et al (2012) Synthesis of dimethyl carbonate from urea and methanol over ZnO(X)–CeO2(1-X) catalysts prepared by a sol–gel method. J Ind Eng Chem 18:1018–1022

    Article  CAS  Google Scholar 

  125. Wu X, Kang M, Yin Y et al (2014) Synthesis of dimethyl carbonate by urea alcoholysis over Zn/Al bi-functional catalysts. Appl Catal A Gen 473:13–20

    Article  CAS  Google Scholar 

  126. Anderson SA, Manthata S, Root TW (2005) The decomposition of dimethyl carbonate over copper zeolite catalysts. Appl Catal A Gen 280:117–124

    Article  CAS  Google Scholar 

  127. Wang H, Wang M, Zhao W et al (2010) Reaction of zinc oxide with urea and its role in urea methanolysis. React Kinet Mech Technol 99:381–389

    CAS  Google Scholar 

  128. Pulla S, Felton CM, Ramidi P et al (2013) Advancements in oxazolidinone synthesis utilizing carbon dioxide as a C1 source. J CO2 Util 2:49–57

    Article  CAS  Google Scholar 

  129. Bhanage M, Fujita S, Ikushima Y et al (2003) Synthesis of cyclic ureas and urethanes from alkylene diamines and amino alcohols with pressurized carbon dioxide in the absence of catalysts. Green Chem 5:340–342

    Article  CAS  Google Scholar 

  130. Wu C, Cheng H, Liu R et al (2010) Synthesis of urea derivatives from amines and CO2 in the absence of catalyst and solvent. Green Chem 12:1811–1816

    Article  CAS  Google Scholar 

  131. Kimura T, Kamata K, Mizuno N (2012) Bifunctional tungstate catalyst for chemical fixation of CO2 at atmospheric pressure. Angew Chem Int Ed 51:6700–6703

    Article  CAS  Google Scholar 

  132. Tamura M, Noro K, Honda M et al (2013) Highly efficient synthesis of cyclic ureas from CO2 and diamines by a pure CeO2 catalyst using a 2-propanol solvent. Green Chem 15:1567–1577

    Article  CAS  Google Scholar 

  133. Tamura M, Honda M, Noro K et al (2013) Heterogeneous CeO2-catalyzed selective synthesis of cyclic carbamates from CO2 and aminoalcohols in acetonitrile solvent. J Catal 305:191–203

    Article  CAS  Google Scholar 

  134. Jiang T, Ma X, Zhou Y et al (2008) Solvent-free synthesis of substituted ureas from CO2 and amines with a functional ionic liquid as the catalyst. Green Chem 10:465–469

    Article  CAS  Google Scholar 

  135. Shi F, Deng Y, SiMa T et al (2003) Alternatives to phosgene and carbon dioxide: synthesis of symmetric urea derivatives with carbon dioxide in ionic liquids. Angew Chem Int Ed 42:3257–3260

    Article  CAS  Google Scholar 

  136. Bhanage M, Fujita S, Ikushima Y et al (2004) Non-catalytic clean synthesis route using urea to cyclic urea and urethane compounds. Green Chem 6:78–80

    Article  CAS  Google Scholar 

  137. Xiao L, Xu L, Xia C (2007) A method for the synthesis of 2-oxazolidinones and 2-imidazolidionones from-five-membered cyclic carbonates and β-aminoalcohols or 1,2-diamines. Green Chem 9:369–372

    Article  CAS  Google Scholar 

  138. Jagtop SR, Patil YP, Fujita S et al (2008) Heterogeneous base catalyzed synthesis of 2-oxazolidinones/2-imidazolidionones via transesterification of ethylene carbonate with β-aminoalcohols/1,2-diamines. Appl Catal A Gen 341:133–138

    Article  CAS  Google Scholar 

  139. Fujita S, Bhanage BM, Kanamaru H et al (2005) Synthesis of 1,3-dialkylurea from ethylene carbonate and amine using calcium oxide. J Mol Catal A Chem 230:43–48

    Article  CAS  Google Scholar 

  140. Jagtop SR, Patil TP, Panda AG et al (2009) Synthesis of 1,3-disubstituted symmetrical/unsymmetrical ureas via Cs2CO3-catalyzed transamination of ethylene carbonate and primary amines. Synth Commun 39:2093–2100

    Article  CAS  Google Scholar 

  141. Kong DL, He LN, Wang JQ (2010) Synthesis urea derivatives from CO2 and amines catalyzed by polyethylene glycol supported potassium hydroxide without dehydrating reagent. Synlett:1276–1280

    Google Scholar 

  142. Mizuno T, Iwai T, Ishino Y (2004) The simple solvent-free synthesis of 1H-quinazoline-2,4-diones using supercritical carbon dioxide and catalytic amount of base. Tetrahedron Lett 45:7073–7075

    Article  CAS  Google Scholar 

  143. Mizuno T, Mihara M, Nakai T et al (2007) Solvent-free synthesis of quinazoline-2,4(1H,3H)-diones using carbon dioxide and a catalytic amount of DBU. Synthesis:2524–2528

    Google Scholar 

  144. Nagai D, Endo T (2009) Synthesis of 1H-quinazoline-2,4-diones from 2-aminobenzonitriles by fixation of carbon dioxide with amidine moiety supported polymer at atmospheric pressure. J Polym Sci A Polym Chem 47:653–657

    Article  CAS  Google Scholar 

  145. Gao J, He LN, Miao CX et al (2010) Chemical fixation of CO2: efficient synthesis of quinazoline-2,4(1H,3H)-diones catalyzed by guanidines under solvent-free conditions. Tetrahedron 66:4063–4067

    Article  CAS  Google Scholar 

  146. Patil YP, Tambe PJ, Jagtop SR et al (2008) Cesium carbonate catalyzed synthesis of quinazoline-2,4(1H,3H)-diones using carbon dioxide and 2-aminobenzonitriles. Green Chem Lett Rev 1:127–132

    Article  CAS  Google Scholar 

  147. Patil YP, Tambe PJ, Deshmuk KM et al (2009) Synthesis of quinazoline-2,4(1H,3H)-diones from carbon dioxide and 2-aminobenzonitriles using [Bmim]OH as a homogeneous recyclable catalyst. Catal Today 148:355–360

    Article  CAS  Google Scholar 

  148. Lu W, Ma J, Hu J et al (2014) Efficient synthesis of quinazoline-2,4(1H,3H)-diones from CO2 using ionic liquids as dual solvent-catalyst at atmospheric pressure. Green Chem 16:221–225

    Article  CAS  Google Scholar 

  149. Lang XD, Zhang S, Song QW et al (2015) Tetra-butylphosphonium arginine-based ionic liquid-promoted cyclization of 2-aminobenzonitrile with carbon dioxide. RSC Adv 5:15668–15673

    Article  CAS  Google Scholar 

  150. Patil YP, Tambe PJ, Parghi KD et al (2009) Synthesis of quinazoline-2,4(1H,3H)-diones from carbon dioxide and 2-aminobenzonitriles using MgO/ZrO2 as a solid base catalyst. Catal Lett 133:201–208

    Article  CAS  Google Scholar 

  151. Fujita S, Tanaka M, Arai M (2014) Synthesis of quinazoline-2,4(1H,3H)-diones from carbon dioxide and 2-aminobenzonitriles using mesoporous smectites incorporating alkali hydroxide. Catal Sci Technol 4:1563–1569

    Article  CAS  Google Scholar 

  152. Nale DB, Rana S, Parida K et al (2014) Amine functionalized MCM-41: an efficient heterogeneous recyclable catalyst for the synthesis of quinazoline-2,4(1H,3H)-diones from carbon dioxide and 2-aminobenzonitriles in water. Catal Sci Technol 4:1608–1614

    Article  CAS  Google Scholar 

  153. Ma J, Han B, Song J et al (2013) Efficient synthesis of quinazoline-2,4(1H,3H)-diones from CO2 and 2-aminobenzonitriles in water without any catalyst. Green Chem 15:1485–1489

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiko Arai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fujita, Si., Yoshida, H., Arai, M. (2016). Synthesis of Carbonate Compounds Using Carbon Dioxide and Carbon Dioxide-Derived Materials. In: Tundo, P., He, LN., Lokteva, E., Mota, C. (eds) Chemistry Beyond Chlorine. Springer, Cham. https://doi.org/10.1007/978-3-319-30073-3_12

Download citation

Publish with us

Policies and ethics