Skip to main content

A Green Method for Potentially Recycling Condensation Polymers: Ring-Chain Recycling

  • Chapter
  • First Online:
Chemistry Beyond Chlorine
  • 1511 Accesses

Abstract

This article discusses the synthesis of a range of condensation polymers by the relatively new method of entropically driven ring-opening polymerization (ED-ROP), a green method of polymer synthesis that has considerable commercial potential. It also discusses the synthesis of the required macrocyclic starting materials by the cyclodepolymerization (CDP) of the same condensation polymers. Both reactions are based on ring-chain equilibria (RCE), the latter being the classical equilibria that can exist between a condensation polymer and the corresponding family of macrocyclic oligomers. Taken together, ED-ROP and CDP form the basis of a potential new method for recycling certain condensation polymers, a method we refer to as “ring-chain recycling” (RCR). Some of the problems that need to be addressed to make the overall process commercially more attractive are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. (a) Höcker H (1993) Thermodynamic recycling – on ring-opening polymerization and ring-closing depolymerization. J Mat Sci, Pure Appl Chem A30:595–601 (b) Höcker H, Keul H (1994) Ring-opening polymerization and ring-closing depolymerization. Adv Mater 6:21–36 (c) Melchiors M, Keul H, Höcker H (1996) Depolymerization of poly[(R)-3-hydroxybutyrate] to cyclic oligomers and polymerization of the cyclic trimer: an example of thermodynamic recycling. Macromolecules 29:6442–6451

    Google Scholar 

  2. Scheirs J (1998) Polymer recycling: science, technology and applications. John Wiley, Chichester

    Google Scholar 

  3. Scheirs J (1998) Chapter 6: Recycling of PVC. In: Scheirs J (ed) Polymer recycling: science, technology and applications. John Wiley, Chichester, pp 232–265

    Google Scholar 

  4. (a) Scheirs J (1998) Polymer recycling: science, technology and applications. John Wiley, Chichester pp 157–165 (b) Naujokas AA, Ryan KM (1991) Recovery process for ethylene glycol and dimethyl terephthalate. US Patent 5,051,328 (to Eastman Kodak Co)

    Google Scholar 

  5. (a) Jacobson H, Stockmayer WH (1950) Intramolecular reaction in polycondensations. I. The theory of linear systems. J Chem Phys 18:1600–1606 (b) Jacobson H, Beckmann CO, Stockmayer WH (1950) Intramolecular reaction in polycondensations. II. Ring-chain equilibrium in polydecamethylene adipate. J Chem Phys 18:1607–1612

    Google Scholar 

  6. (a) Semlyen, JA (1976) Ring-chain equilibriums and the conformations of polymer chains. Adv Polym Sci 21:41–75 (b) Maravigna P, Montaudo M (1989) Chapter 5: Formation of cyclic oligomers. In: Allen G, Bevington JC (eds) Comprehensive polymer science, Vol 5. Pergamon, Oxford, p 63. (c) Suter U W (1989) Chapter 6: Ring-chain equilibria. In: Allen G, Bevington JC (eds) Comprehensive polymer science, Vol 5. Pergamon, Oxford, p 91. (d) Thorn-Csányi E, Ruhland K (1999) Quantitative description of the metathesis polymerization/depolymerization equilibrium in the 1,4-butadiene system. Part 1. Influence of feed concentration and temperature. Macromol Chem Phys 200:1662–1671 (e) Ercolani G, Mandolini L, Mencareli P, Roelens S (1993) Macrocyclization under thermodynamic control. A theoretical study and its application to the equilibrium cyclooligomerization of β-propiolactone. J Am Chem Soc 115:3901–3908 (f) Ercolani G, Mandolini L, Mencareli P (1990) Syntheses of many-membered rings. Part 28. Kinetic models for the irreversible cyclization of two symmetrical monomers. J Chem Soc Perkin Trans 2:747–752 (g) Dalla Cort A, Ercolani G, Mandolini L, Mencareli P (1993) Effective molarities from distributions of cyclic oligomers in the synthesis of polythiolactones. J Chem Soc Chem Commun :538–540

    Google Scholar 

  7. Bryant JJL, Semlyen JA (1997) Cyclic polyesters 7. Preparation and characterization of cyclic oligomers from solution ring-chain reactions of poly(butylene terephthalate). Polymer 38:4531–4537

    Article  CAS  Google Scholar 

  8. Hodge P, Kamau SD, Williams RT (2012) Cyclodepolymerization of polycarbonates in solution: use of the macrocyclic oligomers obtained in entropically-driven ring-opening polymerizations and copolymerizations to give carbonate-carbonate and carbonate-carboxylate ester copolymers. React Funct Polym 72:868–877

    Article  CAS  Google Scholar 

  9. Hodge P (2014) Entropically driven ring-opening polymerization of strainless organic macrocycles. Chem Rev 114:2278–2312

    Article  CAS  Google Scholar 

  10. Hodge P (2014) Cyclodepolymerization as a method for the synthesis of macrocyclic oligomers. React Funct Polym 80:21–32

    Article  CAS  Google Scholar 

  11. Alessi M, Conzatti L, Hodge P, Scafati ST, Stagnaro P (2010) A possible means to assist the processing of PET, PTT and PBT. Macromol Mater Eng 295:374–380

    Article  CAS  Google Scholar 

  12. (a) Dalla Cort A, Ercolani G, Iamiceli AL, Mandolini L, Mencarelli P (1994) Macrocyclization under kinetic control. A theoretical study and its application to the synthesis of poly(thiolactones). J Am Chem Soc 116:7081–7087 (b) Matyjaszewski K, Zielinski M, Kubisa P K, Slomkowski S, Chojnowski J, Penczek S (1980) Kinetically controlled formation of macrocyclic oligomers in ring-opening polymerization. Makromol Chem 181:1469–1482

    Google Scholar 

  13. Gautrot JE, Zhu XX (2006) Main-chain bile acid based degradable elastomers synthesized by entropy-driven ring-opening metathesis polymerization. Angew Chem Int Ed 45:6872–6874

    Article  CAS  Google Scholar 

  14. Ruddick CL, Hodge P, Zhuo Y, Beddoes RL, Helliwell (1999) Cyclo- depolymerisation of polyundecanoate and related polyesters: characterisation of cyclic oligoundecanoates and related cyclic oligoesters. J Mater Chem 9:2399–2405

    Google Scholar 

  15. Manzini B, Hodge P, Ben-Haida A (2010) Entropically-driven ring-opening polymerization of macrocyclic esters with up to 84-membered rings catalyzed by polymer-supported Candida antarctica lipase B. Polym Chem 1:339–346

    Article  CAS  Google Scholar 

  16. (a) Cai J, Hsiao BS, Gross RA (2009) Polypentadecalactone prepared by lipase catalysis. Crystallization kinetics and morphology. Polym Int 58:944–953 (b) de Geus M, van der Meulen L, Goderis B, van Hecke K, Dorschu M, van der Werff H, Koning CE, Heise A (2010) Performance polymers from renewable monomers: high molecular weight poly(pentadecalactone) for fiber applications. Polym Chem 1:525–533

    Google Scholar 

  17. Zhong Z, Dijkstra PJ, Feijen J (2000) Controlled ring-opening polymerization of ω-pentadecalactone with yttrium isopropoxide as an initiator. Macromol Chem Phys 201:1329–1333

    Article  CAS  Google Scholar 

  18. Van der Meulen I, Gubbels E, Huisjer S, Sablong R, Koning CE, Heise A, Duchateau R (2011) Catalytic ring-opening polymerization of renewable macrolactones to high molecular weight polyethylene-like polymers. Macromolecules 44:4301–4305

    Article  Google Scholar 

  19. Focarete ML, Scandola M, Kumar AJ, Gross RA (2001) Physical characterization of poly(ω-pentadecalactone) synthesized by lipase-catalyzed ring- opening polymerization. J Polym Sci B Polym Phys 39:1721–1729

    Article  CAS  Google Scholar 

  20. Skoglund P, Fransson A (1998) Thermophysical properties of polypentadecanolactone. Polymer 39:1899–1906

    Article  CAS  Google Scholar 

  21. Bouyahyi M, Pepels MPF, Heise A, Duchateau R (2012) ω-Pentadecalactone polymerization and ω-pentadecalactone/ε-caprolactone copolymerization reactions using organic catalysts. Macromolecules 45:3356–3366

    Article  CAS  Google Scholar 

  22. Focarete ML, Gazzano M, Scandola M, Kumar A, Gross RA (2002) Copolymers of ω-pentadecalactone and trimethylene carbonate from lipase catalysis: influence of microstructure on solid-state properties. Macromolecules 35:8066–8071

    Article  CAS  Google Scholar 

  23. Kamau SD, Hodge P, Williams RT, Stagnaro P, Conzatti L (2008) High throughput synthesis of polyesters using entropically driven ring-opening polymerizations. J Comb Chem 10:644–654

    Article  CAS  Google Scholar 

  24. Conzatti L, Utzeri R, Hodge P, Stagnaro P (2015) A novel tin-based imidazolium-modified montmorillonite catalyst for the preparation of poly(butylene terephthalate)-based nanocomposites using in situ entropically driven ring-opening polymerization. RSC Advances 5:6222–6231

    Article  CAS  Google Scholar 

  25. Tripathy AR, Elmoumni A, Winter HH, MacKnight WJ (2005) Effect of catalyst and polymerization temperature on the in situ polymerization of cyclic poly(butylene terephthalate) oligomers for composite applications. Macromolecules 38:709–715

    Article  CAS  Google Scholar 

  26. Kamau SD, Hodge P, Helliwell M (2003) Cyclodepolymerization of poly(propylene terephthalate): some ring-opening polymerizations of the cyclic oligomers produced. Polym Adv Tech 14:492–501

    Article  CAS  Google Scholar 

  27. Burch RR, Lustig SR, Spinu M (2000) Synthesis of cyclic oligoesters and their rapid polymerization to high molecular weight. Macromolecules 33:5053–5064

    Article  CAS  Google Scholar 

  28. Youk JH, Kambour KP, MacKnight WJ (2000) Polymerization of ethylene terephthalate cyclic oligomers with antimony trioxide. Macromolecules 33:3594–3599

    Article  CAS  Google Scholar 

  29. Youk JH, Boulares A, Kambour RP, MacKnight WJ (2000) Polymerization of ethylene terephthalate cyclic oligomers with a cyclic dibutyltin initiator. Macromolecules 33:3600–3605

    Article  CAS  Google Scholar 

  30. Hodge P, Yang Z, Ben-Haida A, McGrail CS (2000) Cyclodepolymerisation of poly(ethylene naphthalene-2,6-dicarboxylate) and ring-opening polymerisations of the cyclic oligomers obtained. J Mater Chem 10:1533–1537

    Article  CAS  Google Scholar 

  31. (a) Brunelle DJ, Shannon TG (1991) Preparation and polymerization of bisphenol A cyclic oligomeric carbonates. Macromolecules 24, 3035–3044 (b) Aquino EC, Brittain WJ, Brunelle DJ (1994) Mechanistic studies of carbonate macrocyclization. J Polym Sci, Part A: Polym Chem 32:741–746 (c) Brunelle DJ, Boden EP, Shannon TG (1990) Remarkably selective formation of macrocyclic aromatic carbonates: versatile new intermediates for the synthesis of aromatic polycarbonates. J Am Chem Soc 112:2399–2402 (d) Brunelle DJ (1992) Recent advances in the chemistry of aromatic cyclic oligomers. Makromol Chem, Macromol Symp 64:65–74

    Google Scholar 

  32. (a) Brunelle DJ, Shannon T G (1991) Preparation of functionalized polycarbonates via ring-opening polymerization of diverse mixed oligomeric cyclic carbonates. Makromol Chem, Macromol Symp 42/43:155–166 (b) Brunelle DJ (1995) in New Methods of Polymer Synthesis, Ebdon JR, Eastmond GE (eds) Blackie Academic and Professional: Glasgow, Chapter 6, p 200

    Google Scholar 

  33. See, for example, (a) Feng J, Wang H-F, Zhang X-Z, Zhuo R-X (2009) Investigation on lipase-catalyzed solution polymerization of cyclic carbonate. Eur Polym J 45:523–529 (b) Namekawa S, Uyama H, Kobayashi S, Kricheldorf HR (2000) Lipase-catalyzed ring-opening polymerization and copolymerization of cyclic dicarbonates. Macromol Chem Phys 201:261–264

    Google Scholar 

  34. Ben-Haida A, Hodge P, Colquhoun HM (2005) Ring-chain interconversion in high performance polymer systems. 3. Cyclodepolymerization of poly(m- phenylene isophthalamide) (Nomex) and entropically driven ring-opening polymerization of the macrocyclic oligomers so produced. Macromolecules 38:722–729

    Article  CAS  Google Scholar 

  35. Kim YH, Calabrese J, McEwen C (1996) CaCl3 or Ca2Cl4 complexing cyclic aromatic amide. Template effect on cyclization. J Am Chem Soc 118:1545–1546

    Article  CAS  Google Scholar 

  36. Kamau SD, Hodge P (2004) Cyclo-depolymerisations of polyurethanes to give macrocyclic oligomers: entropically driven ring-opening polymerisations of the macrocyclic oligomers produced. React Funct Polym 60:55–64

    Article  CAS  Google Scholar 

  37. (a) Hodge P, Kamau SD (2003) Entropically driven ring-opening-metathesis polymerization of macrocyclic olefins with 21–84 ring atoms. Angew Chem Int Ed 42:2412–2414 (b) Kamau SD, Hodge P, Hall AJ, Dad S, Ben-Haida B (2007) Cyclodepolymerization of olefin-containing polymers to give macrocyclic oligomers by metathesis and the entropically-driven ROMP of the olefin-containing macrocyclic esters. Polymer 48:6808–6822 (c) Marsella MJ, Maynard HD, Grubbs RB (1997) Template-directed ring-closing metathesis: synthesis and polymerization of unsaturated crown ethers analogs. Angew Chem Int Ed Engl 36:1101–1103

    Google Scholar 

  38. Tastard CY, Hodge P, Ben-Haida A, Dobinson M (2006) Entropically driven ring-opening metathesis polymerization (ED-ROMP) of macrocyclic olefin- containing oligoamides. React Funct Polym 66:93–107

    Article  CAS  Google Scholar 

  39. Xie D, Ji Q, Gibson HW (1997) Synthesis and ring-opening polymerization of single-sized aromatic macrocycles for poly(arylene ether)s. Macromolecules 30:4814–4827

    Article  CAS  Google Scholar 

  40. Colquhoun HM, Lewis DF, Hodge P, Ben-Haida A, Williams DJ, Baxter I (2002) Ring-Chain Interconversion in High-Performance Polymer Systems. 1. [Poly(oxy-4,4′′-biphenyleneoxy-1,4-phenylenesulfonyl-1,4-phenylene)] (Radel-R). Macromolecules 35:6875–6882

    Article  CAS  Google Scholar 

  41. See, for example, (a) Tripathy AR, Burgaz E, Kukureka SN, MacKnight WJ (2003) Poly(butylene terephthalate) nanocomposites prepared by in-situ polymerization. Macromolecules 36:8593–8595 (b) Bert C, Binassi E, Colonna M, Fiorini M, Zuccheri S, Karanam S, Brunelle DJ (2009) Improved dispersion of clay platelets in poly(butylene terephthalate) nanocomposite by ring-opening polymerization of cyclic oligomers: effect of the processing conditions and comparison with nanocomposites obtained by melt intercalation. J Appl Polym Sci 114: 3211–3217 (c) Chen H, Huang C, Yu W, Zhou C (2013) Effect of thermally reduced graphite oxide on the polymerization kinetics of poly(butylene terephthalate) nanocomposites prepared by in situ ring-opening polymerization of cyclic butylene terephthalate. Polymer 54:1603–1611

    Google Scholar 

  42. Ben-Haida A, Colquhoun HM, Hodge P, Stanford JL (2005) A novel approach to processing high-performance polymers that exploits entropically driven ring-opening polymerization. Macromol Rapid Commun 26:1377–1382

    Article  CAS  Google Scholar 

  43. Baxter I, Colquhoun HM, Hodge P, Kohnke FH, Lewis DF, Williams DJ (2000) Macrocyclic oligomers of the aromatic polyetherketone “PK99”: synthesis, fractionation, structural characterization and ring-opening polymerization. J Mat Chem 10:309–314

    Article  CAS  Google Scholar 

  44. Colquhoun HM, Zolotukhin MG, Sestiaa LG, Arico F, Zhu Z, Hodge P, Ben-Haida A, Williams DJ (2003) Microfabrication of high-performance aromatic polymers as nanotubes or fibrils by in situ ring-opening polymerisation of macrocyclic precursors. J Mat Chem 13:1504–1506

    Article  CAS  Google Scholar 

  45. Conzatti L, Alessi M, Stagnaro P, Hodge P (2011) Syntheses of Random PET- co-PTTs and some related copolyesters by entropically-driven ring-opening polymerizations and by melt blending: thermal properties and crystallinity. J Pol Sci A Pol Chem 49:995–1005

    Article  CAS  Google Scholar 

  46. Spanagel EW, Carothers WH (1935) Polymerization and ring formation. XXV macrocyclic esters. J Am Chem Soc 57:929–934

    Article  CAS  Google Scholar 

  47. Spanagel EW, Carothers WH (1936) Polymerization and ring formation. XXVIII. Preparation of macrocyclic lactones by depolymerisation. J Am Chem Soc 58:654–656

    Article  CAS  Google Scholar 

  48. Hodge P (2014) unpublished results

    Google Scholar 

  49. Kaihara S, Osanai Y, Nishikawa K, Toshima K, Doi Y, Matsumura S (2005) Enzymatic transformation of bacterial poly(hydroxyalkanoate)s into repolymerizable oligomers directed towards recycling. Macromol Biosci 5:644–652

    Article  CAS  Google Scholar 

  50. Osanai Y, Toshima K, Matsumura S (2004) Transformation of biodegradable polyesters into cyclic oligomers under continuous flow using an enzyme- packed column. Macromol Biosci 4:936–942

    Article  CAS  Google Scholar 

  51. Bryant JJL, Semlyen JA (1997) Cyclic polyesters 6. Preparation and characterization of two series of cyclic oligomers from solution ring-chain reactions of poly(ethylene terephthalate). Polymer 38:2475–2482

    Article  CAS  Google Scholar 

  52. Hill JW, Carothers WH (1933) Polymerization and ring formation. XX. Many- membered cyclic esters. J Am Chem Soc 55:5031–5039

    Article  CAS  Google Scholar 

  53. See, for example, (a) J Feng, H-F Wang, X-Z Zhang, R-X Zhuo (2009) Investigation on lipase-catalyzed solution polymerization of cyclic carbonate. Eur Polym J 45:523–539 (b) Kricheldorf HR, Mahler A (1996) Polymers of carbonic acid. 18. Polymerization of cyclobis(hexamethylene carbonate) by means of BuSnCl3 or Sn(II)2-ethylhexanoate. Polymer 37:4383–4388

    Google Scholar 

  54. Baxter I, Ben-Haida A, Colquhoun HM, Hodge P, Kohnke FH, Williams DJ (1998) Cyclodepolymerization of bisphenol A polysulfone: evidence of self-complementarity in macrocyclic poly(ether sulfone)s. Chem Commun 1998:2213–2214

    Article  Google Scholar 

  55. Colquhoun HM, Lewis DF, Ben-Haida A, Hodge P (2003) Ring-chain interconversion in high-performance polymer systems. 2. Ring-opening polymerization-copolyetherification in the synthesis of aromatic poly(ether sulfone)s. Macromolecules 36:3775–3778

    Article  CAS  Google Scholar 

  56. See for example, (a) Zhang S, Lemaire V, Féret A, Lefebvre H, Tessier M, Fradet A (2013) Synthesis of linear and hyperbranched polyesters in Bronsted acid ionic liquids. Polym Chem 4:1538–1545 (b) Zhang S, Goncalves LD, Lefebvre H, Tessier M, Rousseau B, Fradet A (2012) Directed poly(β-alanine) synthesis via polycondensation in ionic liquids. ACS Macro Lett 1:1079–1082 (c) Zhang S, Féret A, Lefebvre H, Tessier M, Fradet A (2011) Poly(oxyalkene) synthesis in Bronsted acid ionic liquids. Chem Commun 47:11092–11094

    Google Scholar 

  57. Mueller R-J (2006) Biological degradation of synthetic polyesters – enzymes as potential catalysts for polyester recycling. Process Biochem 41:2124–2128

    Article  CAS  Google Scholar 

  58. See, for example, Colquhoun, HM, Zolotukhin MZ, Zhu Z, Hodge P, Williams DJ (2004) Spontaneous ring-opening polymerization of macrocyclic aromatic thioether ketones under transient high-temperature conditions. Macromol Rapid Commun 25:808–811

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Hodge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hodge, P. (2016). A Green Method for Potentially Recycling Condensation Polymers: Ring-Chain Recycling. In: Tundo, P., He, LN., Lokteva, E., Mota, C. (eds) Chemistry Beyond Chlorine. Springer, Cham. https://doi.org/10.1007/978-3-319-30073-3_10

Download citation

Publish with us

Policies and ethics