Advertisement

The Shadow of Black Holes

  • Arne GrenzebachEmail author
Chapter
  • 692 Downloads
Part of the SpringerBriefs in Physics book series (SpringerBriefs in Physics)

Abstract

It is explained how to derive analytical formulas for the boundary curve of the shadow as seen by an observer at given position in the domain of outer communication. The formulas are used to analyze the dependency of the shadow of a black hole on the motion of the observer. Furthermore, the horizontal and vertical angular diameters of the shadow are calculated. Although explicit formulas are given for the Kerr space-time only, the method holds true for the general Plebański–Demiański class. After all, the angular diameters for the black holes at the centers of our Galaxy and of M87 are estimated.

Keywords

Shadow black hole Shadow analytic formula Shadow boundary curve Moving observer Inclination observer Galactic black hole Penrose aberration Angular diameter shadow Sgr A* shadow M87 shadow 

References

  1. Broderick AE, Narayan R, Kormendy J, Perlman ES, Rieke MJ, Doeleman SS (2015) The event horizon of M87. Astrophys J 805(2): doi: 10.1088/0004-637X/805/2/179. arXiv:1503.03873 Google Scholar
  2. Gebhardt K, Adams J, Richstone D, Lauer TR, Faber SM, Gültekin K, Murphy J, Tremaine S (2011) The black hole mass in M87 from GEMINI/NIFS adaptive optics observations. Astrophys J 729:119(13). doi: 10.1088/0004-637X/729/2/119 Google Scholar
  3. Ghez AM, Salim S, Weinberg NN, Lu JR, Do T, Dunn JK, Matthews K, Morris MR, Yelda S, Becklin EE, Kremenek T, Milosavljevic M, Naiman J (2008) Measuring Distance and Properties of the Milky Way’s Central Supermassive Black Hole with Stellar Orbits. Astrophys J 689(2):1044–1062. doi: 10.1086/592738 Google Scholar
  4. Gillessen S, Eisenhauer F, Trippe S, Alexander T, Genzel R, Martins F, Ott T (2009) Monitoring Stellar Orbits around the Massive Black Hole in the Galactic Center. Astrophys J 692(2):1075–1109. doi: 10.1088/0004-637X/692/2/1075 Google Scholar
  5. Grenzebach A, Perlick V, Lämmerzahl C (2014) Photon regions and shadows of Kerr–Newman–NUT Black Holes with a cosmological constant. Phys Rev D 89:124,004(12). doi: 10.1103/PhysRevD.89.124004. arXiv:1403.5234
  6. Grenzebach A (2015) Aberrational effects for shadows of black holes. In: Puetzfeld et al Proceedings of the 524th WE-Heraeus-Seminar “Equations of Motion in Relativistic Gravity”, held in Bad Honnef, Germany, 17–23 Feb 2013, pp 823–832. doi: 10.1007/978-3-319-18335-0_25, arXiv:1502.02861 Google Scholar
  7. Grenzebach A, Perlick V, Lämmerzahl C (2015) Photon regions and shadows of accelerated black holes. Int J Mod Phys D 24(9):1542,024(22). doi: 10.1142/S0218271815420249 (“Special Issue Papers” of the “7th Black Holes Workshop”, Aveiro, Portugal, arXiv:1503.03036)
  8. Griffiths JB, Podolský J (2009) Exact space-times in Einstein’s general relativity. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge. doi: 10.1017/CBO9780511635397
  9. James O, von Tunzelmann E, Paul F, Thorne KS (2015) Gravitational lensing by spinning black holes in astrophysics, and in the movie Interstellar. Class Quantum Grav 32(6):065,001(41). doi: 10.1088/0264-9381/32/6/065001 Google Scholar
  10. Kormendy J, Ho LC (2013) Coevolution (or not) of supermassive black holes and host galaxies. Annu Rev Astron Astrophys 51:511–653. doi: 10.1146/annurev-astro-082708-101811. arXiv:1304.7762 Google Scholar
  11. Penrose R (1959) The apparent shape of a relativistically moving sphere. Math Proc Cambridge Philos Soc 55(01):137–139. doi: 10.1017/S0305004100033776 Google Scholar
  12. Reid MJ, Menten KM, Zheng XW, Brunthaler A, Moscadelli L, Xu Y, Zhang B, Sato M, Honma M, Hirota T, Hachisuka K, Choi YK, Moellenbrock GA, Bartkiewicz A (2009) Trigonometric parallaxes of massive star-forming regions. VI. Galactic structure, fundamental parameters, and noncircular motions. Astrophys J 700(1):137–148. doi: 10.1088/0004-637X/700/1/137 CrossRefADSGoogle Scholar
  13. Synge JL (1966) The escape of photons from gravitationally intense stars. Mon Notices Royal Astron Soc 131:463–466. http://dx.doi.org/10.1093/mnras/131.3.463 Google Scholar
  14. Walsh JL, Barth AJ, Ho LC, Sarzi M (2013) The M87 black hole mass from gas-dynamical models of space telescope imaging spectrograph observations. Astrophys J 770(2):86(11). doi: 10.1088/0004-637X/770/2/86 Google Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.ZARM—Zentrum für angewandte Raumfahrttechnologie und MikrogravitationUniversität BremenBremenGermany

Personalised recommendations