Skip to main content

Introduction

  • Chapter
  • First Online:
  • 869 Accesses

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

Abstract

Black holes are intriguing astrophysical objects. But it is still unproven whether black holes exists. Therefore, the observational evidence for black holes is discussed. This is followed by a survey of the attempts to observe the shadow of the black holes in our Galaxy near Sagittarius A* and in the neighbouring galaxy M87 by the European BlackHoleCam project and the US-led Event Horizon Telescope project.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A parsec (abbr. pc, short for parallax of one arcsecond) is an astronomical unit to measure distances. It is defined as the distance at which the distance Earth–Sun appears at an angle of 1 arcsecond (as). One finds 1 pc \(= 3.09\times 10^{16}\, \mathrm{m} = 3.26\, \mathrm{ly}\).

  2. 2.

    2013 awarded with the David N. Schramm Award for high-energy astrophysics science journalism.

  3. 3.

    Project website: www.EventHorizonTelescope.org.

  4. 4.

    Project website: BlackHoleCam.org.

  5. 5.

    Wavelength \(\lambda \) and frequency \(\nu \) are linked by the speed c of light: \(\lambda \nu =c=299\,792\,458{\tfrac{\mathrm{m}}{\mathrm{s}}}\).

  6. 6.

    Initially, ALMA was not designed for VLBI observations. In order to work as a phased array equivalent to a single big telescope, ALMA’s processing unit that correlates the signals from the single antennas was changed.

  7. 7.

    The following two paragraphs are based on expositions in [1].

  8. 8.

    Synge did not use the word “shadow” but he investigated the condition under which photons could escape to infinity; this complement of the shadow he called “escape cone”.

  9. 9.

    Blog website: blogs.scientificamerican.com/dark-star-diaries/.

References

  • Abdujabbarov A, Atamurotov F, Kucukakca Y, Ahmedov B, Camci U (2012) Shadow of Kerr-Taub-NUT black hole. Astrophys Space Sci 344(2):429–435. doi:10.1007/s10509-012-1337-6

    Google Scholar 

  • Abdujabbarov AA, Rezzolla L, Ahmedov BJ (2015) A coordinate-independent characterization of a black-hole shadow. Mon Not R Astron Soc 454(3):2423–2435. doi:10.1093/mnras/stv2079, arXiv:1503.09054

    Google Scholar 

  • Agol E (1997) The effects of magnetic fields, absorption, and relativity on the polarization of accretion disks around supermassive black holes. Dissertation, University of California, Santa Barbara. http://faculty.washington.edu/agol/thesis.html

  • Amarilla L, Eiroa EF (2012) Shadow of a rotating braneworld black hole. Phys Rev D 85(6):064,019(9). doi:10.1103/PhysRevD.85.064019

  • Amarilla L, Eiroa EF (2013) Shadow of a Kaluza-Klein rotating dilaton black hole. Phys Rev D 87:044,057(7). doi:10.1103/PhysRevD.87.044057

  • Amarilla L, Eiroa EF, Giribet G (2010) Null geodesics and shadow of a rotating black hole in extended Chern-Simons modified gravity. Phys Rev D 81(12):124,045(8). doi:10.1103/PhysRevD.81.124045

  • Ames WL, Thorne KS (1968) The Optical appearance of a star that is collapsing through its gravitational radius. Astrophys J 151:659–670. doi:10.1086/149465

    Article  ADS  Google Scholar 

  • Armitage PJ, Reynolds CS (2003) The variability of accretion on to Schwarzschild black holes from turbulent magnetized discs. Mon Not R Astron Soc 341(3):1041–1050. doi:10.1046/j.1365-8711.2003.06491.x

    Article  ADS  Google Scholar 

  • Ashtekar A (2015) Viewpoint: the simplicity of black holes. Physics 8(34). doi:10.1103/Physics.8.34

  • Balick B, Brown RL (1974) Intense sub-arcsecond structure in the galactic center. Astrophys J 194:265–270. doi:10.1086/153242

    Article  ADS  Google Scholar 

  • Bambi C, Yoshida N (2010) Shape and position of the shadow in the \(\delta =2\) Tomimatsu–Sato spacetime. Class Quantum Gravity 27(20):205,006(10). doi:10.1088/0264-9381/27/20/205006

    Google Scholar 

  • Bardeen JM (1973) Timelike and null geodesics in the Kerr metric. In: DeWitt C, DeWitt BS (eds) Black holes pp 215–239, New York

    Google Scholar 

  • Bardeen JM, Cunningham CT (1973) The optical appearance of a star orbiting an extreme Kerr black hole. Astrophys J 183:237–264. doi:10.1086/152223

    Article  ADS  Google Scholar 

  • Bohn A, Hébert F, Throwe W, Bunandar D, Henriksson K, Scheel MA, Taylor NW (2015) What does a binary black hole merger look like? Class Quantum Gravity 32(6):065,002(16). doi:10.1088/0264-9381/32/6/065002, arXiv:1410.7775

    Google Scholar 

  • Britzen S (2012) Verbotenes Universum: Die Zeit der Schwarzen Löcher. Goldegg Verlag, Wien

    Google Scholar 

  • Broderick AE, Loeb A (2009) Portrait of a black hole. Sci Am 301:42–49. doi:10.1038/scientificamerican1209-42

    Article  Google Scholar 

  • Broderick AE, Narayan R (2006) On the Nature of the Compact Dark Mass at the Galactic Center. Astrophys J 638:L21–L24. doi:10.1086/500930

    Google Scholar 

  • Broderick AE, Loeb A, Narayan R (2009) The event horizon of Sagittarius A*. Astrophys J 701(2):1357–1366. doi:10.1088/0004-637X/701/2/1357

    Article  ADS  Google Scholar 

  • Broderick AE, Loeb A, Reid MJ (2011) Localizing Sagittarius A* and M87 on Microarcsecond scales with millimeter VLBI. Astrophys J 735(1):57(18), doi:10.1088/0004-637X/735/1/57

    Google Scholar 

  • Broderick AE, Johannsen T, Loeb A, Psaltis D (2014) Testing the no-hair theorem with event horizon telescope observations of Sagittarius A*. Astrophys J 784(1):7(14pp). doi:10.1088/0004-637X/784/1/7

    Google Scholar 

  • Broderick AE, Narayan R, Kormendy J, Perlman ES, Rieke MJ, Doeleman SS (2015) The Event Horizon of M87. Astrophys J 805(2): doi:10.1088/0004-637X/805/2/179, arXiv:1503.03873

    Google Scholar 

  • Bromley BC, Melia F, Liu S (2001) Polarimetric imaging of the massive black hole at the Galactic Center. Astrophys J 555(2):L83–L86. doi:10.1086/322862

    Article  ADS  Google Scholar 

  • Cardoso V, Crispino LCB, Macedo CFB, Okawa H, Pani P (2014) Light rings as observational evidence for event horizons: Long-lived modes, ergoregions and nonlinear instabilities of ultracompact objects. Phys Rev D 90:044,069(10). doi:10.1103/PhysRevD.90.044069

  • Chandrasekhar S (1983) The mathematical theory of black holes, International Series of Monographs on Physics, vol 69. Oxford University Press, Oxford

    Google Scholar 

  • Cornwell TJ (2009) Hogbom’s CLEAN algorithm. Impact on astronomy and beyond. Astron Astrophys 500(65–66):1974. doi:10.1051/0004-6361/200912148 (commentary on Högbom (1974))

  • Dexter J (2011) Radiative Models of Sagittarius A* and M87 from Relativistic MHD Simulations. Dissertation, University of Washington, Washington. http://hdl.handle.net/1773/17085

  • Dexter J, Fragile PC (2013) Tilted black hole accretion disc models of Sagittarius A*: time-variable millimetre to near-infrared emission. Mon Not R Astron Soc 432:2252–2272. doi:10.1093/mnras/stt583

    Article  ADS  Google Scholar 

  • Dexter J, Agol E, Fragile PC, McKinney JC (2012) Radiative models of Sagittarius A* and M87 from relativistic MHD simulations. J Phys: Conf Ser 372(1):012,023(8). doi:10.1088/1742-6596/372/1/012023

    Google Scholar 

  • Doeleman S (2009) Imaging an Event Horizon: submm-VLBI of a Super Massive Black Hole. Astro2010: The Astronomy and Astrophysics Decadal Survey, Science White Papers 68, a Science White Paper to the Decadal Review Committee, arXiv:0906.3899

  • Doeleman S (2010) Building an Event Horizon Telescope: (sub)mm VLBI in the ALMA era. In: Proceedings of Science PoS (10th EVN Symposium)(053). http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(10th%20EVN%20Symposium)053 10th European VLBI Network Symposium and EVN Users Meeting: VLBI and the new generation of radio arrays, September 20 – 24, 2010, Manchester Uk

  • Doeleman SS, Weintroub J, Rogers AEE, Plambeck R, Freund R, Tilanus RPJ, Friberg P, Ziurys LM, Moran JM, Corey B, Young KH, Smythe DL, Titus M, Marrone DP, Cappallo RJ, Bock DCJ, Bower GC, Chamberlin R, Davis GR, Krichbaum TP, Lamb J, Maness H, Niell AE, Roy A, Strittmatter P, Werthimer D, Whitney AR, Woody D (2008) Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre. Lett Nat 455:78–80. doi:10.1038/nature07245

    Article  Google Scholar 

  • Doeleman SS, Fish VL, Schenck DE, Beaudoin C, Blundell R, Bower GC, Broderick AE, Chamberlin R, Freund R, Friberg P, Gurwell MA, Ho PTP, Honma M, Inoue M, Krichbaum TP, Lamb J, Loeb A, Lonsdale C, Marrone DP, Moran JM, Oyama T, Plambeck R, Primiani RA, Rogers AEE, Smythe DL, SooHoo J, Strittmatter P, Tilanus RPJ, Titus M, Weintroub J, Wright M, Young KH, Ziurys LM (2012) Jet-launching structure resolved near the supermassive black hole in M87. Science 338(6105):355–358. doi:10.1126/science.1224768

    Article  ADS  Google Scholar 

  • Dyson FW, Eddington AS, Davidson C (1920) A determination of the deflection of light by the sun’s gravitational field, from observations made at the total eclipse of May 29, 1919. Philos Trans R Soc Lond A: Math Phys Eng Sci 220(571–581):291–333. doi:10.1098/rsta.1920.0009

    Google Scholar 

  • Eckart A, Genzel R (1996) Observations of stellar proper motions near the Galactic Centre. Nature 383(5):415–417. doi:10.1038/383415a0

    Google Scholar 

  • Eckart A, Genzel R (1997) Stellar proper motions in the central 0.1 pc of the Galaxy. Mon Not R Astron Soc 284(3):576–598. doi:10.1093/mnras/284.3.576

    Article  ADS  Google Scholar 

  • Eckart A, Schödel R, Straubmeier C (2005) The black hole at the center of the Milky Way. Imperial College Press, Covent Garden. doi:10.1142/9781860947391

  • Einstein A (1905) Zur Elektrodynamik bewegter Körper. Ann der Phys 17:891–921. http://www.physik.uni-augsburg.de/annalen/history/einstein-papers/1905_17_891-921.pdf

    Google Scholar 

  • Einstein A (1915a) Die Feldgleichungen der Gravitation. Sitzungsberichte der Königlich-Preußischen Akademie der Wissenschaften, pp 844–847. http://echo.mpiwg-berlin.mpg.de/MPIWG:ZZB2HK6W

  • Einstein A (1915b) Zur allgemeinen Relativitätstheorie. Sitzungsberichte der Königlich-Preußischen Akademie der Wissenschaften, pp 778–786. http://echo.mpiwg-berlin.mpg.de/MPIWG:DPP4MDQV

  • Einstein A (1915c) Zur allgemeinen Relativitätstheorie (Nachtrag). Sitzungsberichte der Königlich-Preußischen Akademie der Wissenschaften, pp 799–801. http://echo.mpiwg-berlin.mpg.de/MPIWG:GTN3GYS8

  • Einstein A (1916) Die Grundlage der allgemeinen Relativitätstheorie. Ann der Phys 49(7):769–822. http://www.physik.uni-augsburg.de/annalen/history/einstein-papers/1916_49_769-822

    Google Scholar 

  • Eisenhauer F, Schödel R, Genzel R, Ott T, Tecza M, Abuter R, Eckart A, Alexander T (2003) A Geometric Determination of the Distance to the Galactic Center. Astrophys J Lett 597(2):L121–L124. doi:10.1086/380188

    Google Scholar 

  • Eisenhauer F, Perrin G, Straubmeier C, Brandner W, Boehm A, Cassaing F, Clenet Y, Dodds-Eden K, Eckart A, Fedou P, Gendron E, Genzel R, Gillessen S, Graeter A, Gueriau C, Hamaus N, Haubois X, Haug M, Henning T, Hippler S, Hofmann R, Hormuth F, Houairi K, Kellner S, Kervella P, Klein R, Kolmeder J, Laun W, Lena P, Lenzen R, Marteaud M, Meschke D, Naranjo V, Neumann U, Paumard T, Perger M, Perret D, Rabien S, Ramos JR, Reess JM, Rohloff RR, Rouan D, Rousset G, Ruyet B, Schropp M, Talureau B, Thiel M, Ziegleder J, Ziegler D (2007) GRAVITY: microarcsecond astrometry and deep interferometric imaging with the VLTI. In: Proceedings of the International Astronomical Union, symposium No. 248, vol 3, pp 100–101. doi:10.1017/S1743921308018723

    Google Scholar 

  • Eisenhauer F, Perrin G, Brandner W, Straubmeier C, Böhm A, Baumeister H, Cassaing F, Clénet Y, Dodds-Eden K, Eckart A, Gendron E, Genzel R, Gillessen S, Gräter A, Gueriau C, Hamaus N, Haubois X, Haug M, Henning T, Hippler S, Hofmann R, Hormuth F, Houairi K, Kellner S, Kervella P, Klein R, Kolmeder J, Laun W, Léna P, Lenzen R, Marteaud M, Naranjo V, Neumann U, Paumard T, Rabien S, Ramos JR, Reess JM, Rohloff D R-R Rouan, Rousset G, Ruyet B, Sevin A, Thiel M, Ziegleder J, Ziegler D (2009) GRAVITY: Microarcsecond Astrometry and Deep Interferometric Imaging with the VLT. In: Moorwood (2009), pp 361–365. doi:10.1007/978-1-4020-9190-2_61

    Google Scholar 

  • Ewing A (1964) ‘Black Holes’ in space. Sci News Lett 85(3):39. https://www.sciencenews.org/archive/black-holes-space

    Google Scholar 

  • Falcke H, Melia F, Agol E (2000) Viewing the shadow of the black hole at the Galactic Center. Astrophys J 528:L13–L16. doi:10.1086/312423

    Article  ADS  Google Scholar 

  • Falcke H, Hehl F (eds) (2003) The galactic black hole: lectures on general relativity and astrophysics. Cosmology and Gravitation, IoP Publishing, Bristol, U.K, Series in High Energy Physics

    Google Scholar 

  • Falcke H, Markoff SB (2013) Toward the event horizon—the supermassive black hole in the Galactic Center. Class Quantum Gravity 30(24):244,003(24pp). doi:10.1088/0264-9381/30/24/244003, published in “Astrophysical black holes”, ed. by D. Merritt and L. Rezzolla

    Google Scholar 

  • Fish V (2010) Observing event horizons with high-frequency VLBI. In: Proceedings of Science PoS (10th EVN Symposium). 10th european VLBI network symposium and EVN users meeting: VLBI and the new generation of radio arrays, 20–24 Sept 2010, Manchester, Uk. http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(10th%20EVN%20Symposium)052

  • Fish VL, Doeleman SS (2009) Observing a black hole event horizon: (sub)millimeter VLBI of Sgr A*. In: Proceedings of the International Astronomical Union, vol 5, pp 271–276. doi:10.1017/S1743921309990500, symposium S261 (Relativity in Fundamental Astronomy: Dynamics, Reference Frames, and Data Analysis)

    Google Scholar 

  • Fish V, Alef W, Anderson J, Asada K, Baudry A, Broderick A, Carilli C, Colomer F, Conway J, Dexter J, Doeleman S, Eatough R, Falcke H, Frey S, Gabányi K, Gálvan-Madrid R, Gammie C, Giroletti M, Goddi C, Gómez JL, Hada K, Hecht M, Honma M, Humphreys E, Impellizzeri V, Johannsen T, Jorstad S, Kino M, Körding E, Kramer M, Krichbaum T, Kudryavtseva N, Laing R, Lazio J, Loeb A, Lu RS, Maccarone T, Marscher A, Martí-Vidal I, Martins C, Matthews L, Menten K, Miller J, Miller-Jones J, Mirabel F, Muller S, Nagai H, Nagar N, Nakamura M, Paragi Z, Pradel N, Psaltis D, Ransom S, Rodríguez L, Rottmann H, Rushton A, Shen ZQ, Smith D, Stappers B, Takahashi R, Tarchi A, Tilanus R, Verbiest J, Vlemmings W, Walker RC, Wardle J, Wiik K, Zackrisson E, Zensus JA (2013) High-Angular-Resolution and High-Sensitivity Science Enabled by Beamformed ALMA, whitepaper, arXiv:1309.3519

  • Fish VL, Johnson MD, Lu RS, Doeleman SS, Bouman KL, Zoran D, Freeman WT, Psaltis D, Narayan R, Pankratius V, Broderick AE, Gwinn CR, Vertatschitsch LE (2014) Imaging an Event Horizon: mitigation of scattering toward Sagittarius A*. Astrophys J 795:134(7pp). doi:10.1088/0004-637X/795/2/134

    Google Scholar 

  • Genzel R (2014) Massive black holes: evidence, demographics and cosmic evolution, In: Blandford R, Sevrin A (eds) Proceedings of the 26th solvay conference on physics: “Astrophysics and Cosmology”. World Scientific, arXiv:1410.8717

  • Genzel R, Eisenhauer F, Gillessen S (2010) The Galactic Center massive black hole and nuclear star cluster. Rev Mod Phys 82:3121. doi:10.1103/RevModPhys.82.3121, arXiv:1006.0064

    Google Scholar 

  • Ghez AM, Klein BL, Morris M, Becklin EE (1998) High Proper-Motion Stars in the Vicinity of Sagittarius A*: Evidence for a Supermassive Black Hole at the Center of Our Galaxy. Astrophys J 509(2):678. doi:10.1086/306528

    Google Scholar 

  • Ghez AM, Salim S, Hornstein SD, Tanner A, Lu JR, Morris M, Becklin EE, Duchêne G (2005) Stellar Orbits around the Galactic Center Black Hole. Astrophys J 620(2):744. doi:10.1086/427175

    Google Scholar 

  • Gillessen S, Eisenhauer F, Quataert E, Genzel R, Paumard T, Trippe S, Ott T, Abuter R, Eckart A, Lagage PO, Lehnert MD, Tacconi LJ, Martins F (2006) Variations in the spectral slope of Sagittarius A* during a Near-Infrared Flare. Astrophys J Lett 640(2):L163. doi:10.1086/503557

    Article  ADS  Google Scholar 

  • Ghez AM, Salim S, Weinberg NN, Lu JR, Do T, Dunn JK, Matthews K, Morris MR, Yelda S, Becklin EE, Kremenek T, Milosavljevic M, Naiman J (2008) Measuring Distance and Properties of the Milky Way’s Central Supermassive Black Hole with Stellar Orbits. Astrophys J 689(2):1044–1062. doi:10.1086/592738

    Google Scholar 

  • Gillessen S, Eisenhauer F, Trippe S, Alexander T, Genzel R, Martins F, Ott T (2009) Monitoring Stellar Orbits around the Massive Black Hole in the Galactic Center. Astrophys J 692(2):1075–1109. doi:10.1088/0004-637X/692/2/1075

    Google Scholar 

  • Goss WM, Brown RL, Lo KY (2003) The Discovery of Sgr A*. Astron Nachr 324(S1):497–504. doi:10.1002/asna.200385047 (Proceedings of the Galactic Center Workshop 2002—The central 300 parsecs of the Milky Way, arXiv:astro-ph/0305074)

  • Grenzebach A, Perlick V, Lämmerzahl C (2014) Photon regions and shadows of Kerr–Newman–NUT Black Holes with a cosmological constant. Phys Rev D 89:124,004(12). doi:10.1103/PhysRevD.89.124004. arXiv:1403.5234

  • Grenzebach A (2015) Aberrational effects for shadows of black holes. In: Puetzfeld et al Proceedings of the 524th WE-Heraeus-Seminar “Equations of Motion in Relativistic Gravity”, held in Bad Honnef, Germany, 17–23 Feb 2013, pp 823–832. doi:10.1007/978-3-319-18335-0_25, arXiv:1502.02861

    Google Scholar 

  • Grenzebach A, Perlick V, Lämmerzahl C (2015) Photon regions and shadows of accelerated black holes. Int J Mod Phys D 24(9):1542,024(22). doi:10.1142/S0218271815420249 (“Special Issue Papers” of the “7th Black Holes Workshop”, Aveiro, Portugal, arXiv:1503.03036)

  • Gürlebeck N (2015) No-Hair Theorem for Black Holes in Astrophysical Environments. Phys Rev Lett 114:151,102(5). doi:10.1103/PhysRevLett.114.151102, arXiv:1503.03240

  • Hawking SW (1974) Black hole explosions? Nature 248:30–31. doi:10.1038/248030a0

    Google Scholar 

  • Hawking SW (1975) Particle creation by black holes. Commun Math Phys 43(3):199–220. doi:10.1007/BF02345020

    Google Scholar 

  • Hawking SW (1976) Black holes and thermodynamics. Phys Rev D 13(2):191–197. doi:10.1103/PhysRevD.13.191

    Article  ADS  Google Scholar 

  • Hioki K, Maeda Ki (2009) Measurement of the Kerr spin parameter by observation of a compact object’s shadow. Phys Rev D 80(2):024,042(9). doi:10.1103/PhysRevD.80.024042

  • Högbom JA (1974) Aperture synthesis with a non-regular distribution of interferometer baselines. Astron Astrophys Suppl 15:417–426

    ADS  Google Scholar 

  • Högbom JA (2003) Early Work in Imaging. In: Zensus et al. Proceedings of a conference in honor of Kenneth I. Kellermann on the occasion of his 65th Birthday held at the National Radio Astronomy Observatory, Green Bank, West Virginia, USA, 10–12 Oct 2002

    Google Scholar 

  • Huang L, Cai M, Shen ZQ, Yuan F (2007) Black hole shadow image and visibility analysis of Sagittarius \(A^{*}\). Mon Not R Astron Soc 379(3):833–840. doi:10.1111/j.1365-2966.2007.11713.x

    Article  ADS  Google Scholar 

  • Inoue M, Blundell R, Brisken W, Chen MT, Doeleman S, Fish V, Ho P, Moran J, Napier P, the Greenland Telescope (GLT) Team (2012) Submm VLBI toward Shadow Image of Super Massive Black Hole. In: Proceedings of Science RTS2012(018). http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(RTS2012)018, resolving the Sky—Radio Interferometry: Past, Present and Future, 17–20 April 2012, Manchester Uk

  • Inoue M, Algaba-Marcos JC, Asada K, Blundell R, Brisken W, Burgos R, Chang CC, Chen MT, Doeleman SS, Fish V, Grimes P, Han J, Hirashita H, Ho PTP, Hsieh SN, Huang T, Jiang H, Keto E, Koch PM, Kubo DY, Kuo CY, Liu B, Martin-Cocher P, Matsushita S, Meyer-Zhao Z, Nakamura M, Napier P, Nishioka H, Nystrom G, Paine S, Patel N, Pradel N, Pu HY, Raffin PA, Shen HY, Snow W, Srinivasan R, Wei TS (2014) Greenland telescope project: direct confirmation of black hole with sub-millimeter VLBI. Radio Sci 49(7):564–571. doi:10.1002/2014RS005450, arXiv:1407.2450

    Google Scholar 

  • James O, von Tunzelmann E, Paul F, Thorne KS (2015) Gravitational lensing by spinning black holes in astrophysics, and in the movie Interstellar. Class Quantum Gravity 32(6):065,001(41). doi:10.1088/0264-9381/32/6/065001

    Google Scholar 

  • Johannsen T (2012a) Testing General Relativity in the Strong-Field Regime with Observations of Black Holes in the Electromagnetic Spectrum. Phd thesis, University of Arizona, Tucson. http://hdl.handle.net/10150/238893

    Google Scholar 

  • Johannsen T (2012b) Testing the no-hair theorem with Sgr A*. Adv Astron 486750(9). doi:10.1155/2012/486750

    Google Scholar 

  • Johannsen T (2013) Photon Rings around Kerr and Kerr-like black holes. Astrophys J 777(2):170(12). doi:10.1088/0004-637X/777/2/170

    Google Scholar 

  • Johannsen T, Psaltis D (2011) Metric for rapidly spinning black holes suitable for strong-field tests of the no-hair theorem. Phys Rev D 83(12):124,015(10). doi:10.1103/PhysRevD.83.124015

  • Kardashev NS, Novikov ID, Lukash VN, Pilipenko SV, Mikheeva EV, Bisikalo DV, Wiebe DS, Doroshkevich AG, Zasov AV, Zinchenko II, Ivanov PB, Kostenko VI, Larchenkova TI, Likhachev SF, Malov IF, Malofeev VM, Pozanenko AS, Smirnov AV, Sobolev AM, Cherepashchuk AM, Shchekinov YA (2014) Review of scientific topics for Millimetron space observatory. Uspekhi Fizicheskih Nauk 184(12):1319–1352. doi:10.3367/UFNr.0184.201412c.1319, english translation available on, arXiv:1502.06071

    Google Scholar 

  • Kellermann KI (1972) Intercontinental radio astronomy. Sci Am 226:72–83. doi:10.1038/scientificamerican0272-72

    Article  Google Scholar 

  • Kennefick D (2009) Testing relativity from the 1919 eclipse—a question of bias. Phys Today 37–42. doi:10.1063/1.3099578

    Google Scholar 

  • Kerr RP (1963) Gravitational field of a spinning mass as an example of algebraically special metrics. Phys Rev Lett 11(5):237–238. doi:10.1103/PhysRevLett.11.237

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Kormendy J, Ho LC (2013) Coevolution (Or Not) of Supermassive black holes and host galaxies. Ann Rev Astron Astrophys 51:511–653. doi:10.1146/annurev-astro-082708-101811, arXiv:1304.7762

    Google Scholar 

  • Krichbaum TP, Graham DA, Witzel A, Greve A, Wink JE, Grewing M, Colomer F, de Vicente P, Gómez-González J, Baudry A, Zensus JA (1998) VLBI observations of the galactic center source Sgr A* at 86 GHz and 215 GHz. Astron Astrophys 335(3):L106–L110. http://aa.springer.de/bibs/8335003/230l106/small.htm

  • Krichbaum TP (2010) Imaging Super Massive Black Holes and the Origin of Jets—Global mm- and sub-mm-VLBI Studies of Compact Radio Sources. http://www.mpifr-bonn.mpg.de/div/vlbi/globalmm/pspdf/1mmwhitepaper.APEX-ALMA.pdf, a Whitepaper and Proposal for submm-VLBI with APEX and ALMA, Max-Planck-Institut für Radioastronomie, Bonn, Germany

  • Krichbaum TP, Roy A, Wagner J, Rottmann H, Hodgson JA, Bertarini A, Alef W, Zensus JA, Marscher A, Jorstad S, Freund R, Marrone D, Strittmatter P, Ziurys L, Blundell R, Weintroub J, Young K, Fish V, Doeleman S, Bremer M, Sanchez S, Fuhrmann L, Angelakis E, Karamanavis V (2012) Zooming towards the Event Horizon—mm-VLBI today and tomorrow. Proc Sci 178(055). http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(11th%20EVN%20Symposium)055 Proceedings of the 11th European VLBI Network Symposium & Users Meeting, 20–24 Sept, Bordeaux, France

  • Kruesi L (2012) How we know black holes exist. Astronomy Magazine April:24–29. http://www.astronomy.com/-/media/Files/PDF/Magazine%20articles/How-we-know-black-holes-exist.pdf

  • Li Z, Bambi C (2014) Measuring the Kerr spin parameter of regular black holes from their shadow. J Cosmol Astropart Phys 01(041). doi:10.1088/1475-7516/2014/01/041

    Google Scholar 

  • Lu RS, Broderick AE, Baron F, Monnier JD, Fish VL, Doeleman SS, Pankratius V (2014) Imaging the supermassive black hole shadow and jet base of M87 with the event horizon telescope. Astrophys J 788(2):120(10pp). doi:10.1088/0004-637X/788/2/120

    Google Scholar 

  • Luminet JP (1979) Image of a spherical black hole with thin accretion disk. Astron Astrophys 75(1-2):228–235. http://adsabs.harvard.edu/abs/1979A%26A....75..228L

  • Luminet JP (1998) Black Holes: A General Introduction. In: Hehl et al Proceedings of the 179th W.E. Heraeus Seminar held at Bad Honnef, Germany, 18–22 August 1997. pp 3–34. doi:10.1007/978-3-540-49535-2_1, arXiv:astro-ph/9801252

    Google Scholar 

  • Lynden-Bell D (1969) Galactic nuclei as collapsed old quasars. Nature 223:690–694. doi:10.1038/223690a0

    Article  ADS  Google Scholar 

  • Lynden-Bell D, Rees MJ (1971) On Quasars, Dust and the Galactic Centre. Mon Not R Astron Soc 152(4):461–475. doi:10.1093/mnras/152.4.461

    Google Scholar 

  • Lyubenova M, Kissler-Patig M (eds) (2011) An Expanded View of the Universe—Science with the European Extremely Large Telescope. European Southern Observatory—E-ELT Science Office, Garching. http://www.eso.org/sci/facilities/eelt/science/doc/eelt_sciencecase.pdf

  • Maiolino R (2008) Prospects for AGN studies with ALMA. New Astron Rev 52:339–357. doi:10.1016/j.newar.2008.06.012

    Article  ADS  Google Scholar 

  • Marck JA (1996) Short-cut method of solution of geodesic equations for Schwarzschild black hole. Class Quantum Gravity 13:393–402. doi:10.1088/0264-9381/13/3/007

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Mazur PO, Mottola E (2001) Gravitational Condensate stars: an alternative to black holes, unpublished, arXiv:gr-qc/0109035

  • Melia F (2003) The black hole at the center of our galaxy. Princeton University Press, Princeton. http://press.princeton.edu/titles/7480.html

  • Melia F, Falcke H (2001) The supermassive black hole at the Galactic Center. Ann Rev Astron Astrophys 39:309–352. doi:10.1146/annurev.astro.39.1.309

    Article  ADS  Google Scholar 

  • Meyer L, Ghez AM, Schödel R, Yelda S, Boehle A, Lu JR, Do T, Morris MR, Becklin EE, Matthews K (2012a) The Shortest-Known-Period Star Orbiting Our Galaxy’s Supermassive Black Hole. Science 338(6103):84–87. doi:10.1126/science.1225506

    Google Scholar 

  • Misner CW, Thorne KS, Wheeler JA (1973) Gravitation. W. H, Freeman and Company, San Francisco

    Google Scholar 

  • Moran JM (2003) Thiry years of VLBI: early days, successes, and future. In: Zensus et al proceedings of a conference in honor of Kenneth I. Kellermann on the occasion of his 65th Birthday held at the National Radio Astronomy Observatory, pp 1–10, Green Bank, West Virginia, USA, 10–12 Oct 2002

    Google Scholar 

  • Morris MR, Meyer L, Ghez AM (2012) Galactic center research: manifestations of the central black hole. Res Astron Astrophys 12(8):995–1020. doi:10.1088/1674-4527/12/8/007

    Article  ADS  Google Scholar 

  • Mościbrodzka M, Gammie CF, Dolence JC, Shiokawa H (2011) Pair production in low-luminosity galactic nuclei. Astrophys J 735(1):9(14). doi:10.1088/0004-637X/735/1/9

    Google Scholar 

  • Mościbrodzka M, Shiokawa H, Gammie CF, Dolence JC (2012) The Galactic Center weather forecast. Astrophys J Lett 752(1):L1(6). doi:10.1088/2041-8205/752/1/L1

    Google Scholar 

  • Mościbrodzka M, Falcke H, Shiokawa H, Gammie CF (2014) Observational appearance of inefficient accretion flows and jets in 3D GRMHD simulations: application to Sgr A*. Astron Astrophys 570:A7(10). doi:10.1051/0004-6361/201424358

    Google Scholar 

  • Müller A (2004) Black Hole Astrophysics. Magnetohydrodynamics on the Kerr Geometry. Dissertation, University of Heidelberg, Heidelberg. http://www.wissenschaft-online.de/astrowissen/downloads/PhD/PhD_AMueller.pdf

  • Nakamura M, Algaba JC, Asada K, Chen B, Chen MT, Han J, Ho PHP, Hsieh SN, Huang T, Inoue M, Koch P, Kuo CY, Martin-Cocher P, Matsushita S, Meyer-Zhao Z, Nishioka H, Nystrom G, Pradel N, Pu HY, Raffin P, Shen HY, Tseng CY, the Greenland Telescope Project Team (2013) Greenland telescope project: a direct confirmation of black hole with submillimeter VLBI. EPJ Web Conf 61(01):008. doi:10.1051/epjconf/20136101008, arXiv:1310.1665

    Google Scholar 

  • Ortiz N, Sarbach O, Zannias T (2015) The shadow of a naked singularity. Phys Rev D 92(044):035. doi:10.1103/PhysRevD.92.044035, arXiv:1505.07017

  • Petri M (2003a) Compact anisotropic stars with membrane—a new class of exact solutions to the Einstein field equations, unpublished, arXiv:gr-qc/0306063

  • Petri M (2003b) The holostar—a self-consistent model for a compact self-gravitating object, unpublished, arXiv:gr-qc/0306066

  • Perlick V (2004) Gravitational lensing form a spacetime perspective. Living Rev Relativ 7(9). doi:10.12942/lrr-2004-9

  • Petit JP (1995) Das Schwarze Loch. Die Abenteurer des Anselm Wüßtegern, Vieweg, Braunschweig; Wiesbaden. http://www.savoir-sans-frontieres.com/JPP/telechargeables/free_downloads.htm

  • Psaltis D, Narayan R, Fish VL, Broderick AE, Loeb A, Doeleman SS (2015) Event Horizon telescope evidence for alignment of the black hole in the center of the Milky Way with the inner stellar disk. Astrophys J 798(1):15. doi:10.1088/0004-637X/798/1/15

    Article  ADS  Google Scholar 

  • Rees MJ (1974) Black holes. Observatory 94:168–179

    ADS  Google Scholar 

  • Rees MJ (1984) Black Hole Models for Active Galactic Nuclei. Ann Rev Astron Astrophys 22(1):471–506. doi:10.1146/annurev.aa.22.090184.002351

    Google Scholar 

  • Ricarte A, Dexter J (2015) The Event Horizon Telescope: exploring strong gravity and accretion physics. Mon Not R Astron Soc 446(2):1973–1987. doi:10.1093/mnras/stu2128, arXiv:1410.2899

    Google Scholar 

  • Salim S, Gould A (1999) Sagittarius A* “Visual Binaries”: a direct measurement of the galactocentric distance. Astrophys J 523(2):633–641. doi:10.1086/307756

    Article  ADS  Google Scholar 

  • Schödel R, Eckart A, Straubmeier C, Pott JU (2005) NIR Observations of the Galactic Center. In: Röser S (ed) From cosmological structures to the Milky Way, Reviews in Modern Astronomy, vol 18. Wiley-VCH, Weinheim, pp 195–203. http://www.astronomische-gesellschaft.de/de/publikationen/reviews/reviews-in-modern-astronomy-18/Schoedel.pdf

    Google Scholar 

  • Schwarzschild K (1916) Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin (VII):189–196. http://de.wikisource.org/wiki/Index:K._Schwarzschild_-_%C3%9Cber_das_Gravitationsfeld_eines_Massenpunktes_nach_der_Einsteinschen_Theorie_%281916%29.pdf digitale Volltext-Ausgabe in Wikisource

  • von Soldner JG (1804) Ueber die Ablenkung eines Lichtstrals von seiner geradlinigen Bewegung. Astronomisches Jahrbuch für das Jahr 1804, pp 161–172. https://de.wikisource.org/wiki/Ueber_die_Ablenkung_eines_Lichtstrals_von_seiner_geradlinigen_Bewegung

  • Spencer RE (1991) Very Long Baseline Interferometry: current status and future prospects. Vistas Astron 34:61–68. doi:10.1016/0083-6656(91)90020-S

    Article  ADS  Google Scholar 

  • Synge JL (1966) The escape of photons from gravitationally intense stars. Monthly Not R Astron Soc 131:463–466. http://dx.doi.org/10.1093/mnras/131.3.463

    Google Scholar 

  • Takahashi R (2004) Shapes and Positions of Black Hole Shadows in Accretion Disks and Spin Parameters of Black Holes. Astrophys J 611(2):996–1004. doi:10.1086/422403

    Google Scholar 

  • Tanaka Y, Nandra K, Fabian AC, Inoue H, Otani C, Dotani T, Hayashida K, Iwasawa K, Kii T, Kunieda H, Makino F, Matsuoka M (1995) Gravitationally redshifted emission implying an accretion disk and massive black hole in the active galaxy MCG-6-30-15. Lett Nat 375:659–661. doi:10.1038/375659a0

    Google Scholar 

  • Thiébaut E (2009) Image reconstruction with optical interferometers. New Astron Rev 53(11–12):312–328. doi:10.1016/j.newar.2010.07.011 (proceedings: VLTI summerschool)

  • Thompson AR, Moran JM, Swenson GW Jr (2004) Interferometry and synthesis in radio astronomy, 2nd edn. Wiley, Weinheim. doi:10.1002/9783527617845

  • Tilanus RPJ, Krichbaum TP, Zensus JA, Baudry A, Bremer M, Falcke H, Giovannini G, Laing R, van Langevelde HJ, Vlemmings W (2014) Future mmVLBI Research with ALMA: A European vision, whitepaper on mm-VLBI with ALMA, arXiv:1406.4650

  • Tsukamoto N, Li Z, Bambi C (2014) Constraining the spin and the deformation parameters from the black hole shadow. J Cosmol Astropart Phys 6:043(21). doi:10.1088/1475-7516/2014/06/043, arXiv:1403.0371

    Google Scholar 

  • Vincent FH, Yan W, Straub O, Zdziarski AA, Abramowicz MA (2015) A magnetized torus for modeling Sagittarius A* millimeter images and spectra. Astron Astrophys 574(A48): doi:10.1051/0004-6361/201424306

    Google Scholar 

  • de Vries A (2000) The apparent shape of a rotating charged black hole, closed photon orbits and the bifurcation set \(A_{4}\). Class Quantum Gravity 17:123–144. doi:10.1088/0264-9381/17/1/309

    Article  MATH  ADS  Google Scholar 

  • Walsh D, Carswell RF, Weymann RJ (1979) 0957 + 561 A, B: twin quasistellar objects or gravitational lens? Nature 279:381–384. doi:10.1038/279381a0

    Article  ADS  Google Scholar 

  • Will CM (1988) Henry Cavendish, Johann von Soldner, and the deflection of light. Am J Phys 56(5):413–415. doi:10.1119/1.15622

    Article  ADS  Google Scholar 

  • Younsi Z, Wu K (2013) Covariant Compton scattering kernel in general relativistic radiative transfer. Mon Not R Astron Soc 433(2):1054–1081. doi:10.1093/mnras/stt786

    Article  ADS  Google Scholar 

  • Younsi Z, Wu K, Fuerst SV (2012) General relativistic radiative transfer: formulation and emission from structured tori around black holes. Astron Astrophys 545:A13(3). doi:10.1051/0004-6361/201219599

    Google Scholar 

  • Yumoto A, Nitta D, Chiba T, Sugiyama N (2012) Shadows of multi-black holes: analytic exploration. Phys Rev D 86(10):103,001(10). doi:10.1103/PhysRevD.86.103001

  • Zakharov AF, De Paolis F, Ingrosso G, Nucita AA (2012) Shadows as a tool to evaluate black hole parameters and a dimension of spacetime. New Astron Rev 56(2–3):64–73. doi:10.1016/j.newar.2011.09.002

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Grenzebach .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Grenzebach, A. (2016). Introduction. In: The Shadow of Black Holes. SpringerBriefs in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-30066-5_1

Download citation

Publish with us

Policies and ethics