• Arne GrenzebachEmail author
Part of the SpringerBriefs in Physics book series (SpringerBriefs in Physics)


Black holes are intriguing astrophysical objects. But it is still unproven whether black holes exists. Therefore, the observational evidence for black holes is discussed. This is followed by a survey of the attempts to observe the shadow of the black holes in our Galaxy near Sagittarius A* and in the neighbouring galaxy M87 by the European BlackHoleCam project and the US-led Event Horizon Telescope project.


Observational evidence black holes Shadow observation Galactic center Observing Sgr A* Observing M87 Black hole cam Event horizon telescope VLBI observation 


  1. Abdujabbarov A, Atamurotov F, Kucukakca Y, Ahmedov B, Camci U (2012) Shadow of Kerr-Taub-NUT black hole. Astrophys Space Sci 344(2):429–435. doi: 10.1007/s10509-012-1337-6 Google Scholar
  2. Abdujabbarov AA, Rezzolla L, Ahmedov BJ (2015) A coordinate-independent characterization of a black-hole shadow. Mon Not R Astron Soc 454(3):2423–2435. doi: 10.1093/mnras/stv2079, arXiv:1503.09054 Google Scholar
  3. Agol E (1997) The effects of magnetic fields, absorption, and relativity on the polarization of accretion disks around supermassive black holes. Dissertation, University of California, Santa Barbara.
  4. Amarilla L, Eiroa EF (2012) Shadow of a rotating braneworld black hole. Phys Rev D 85(6):064,019(9). doi: 10.1103/PhysRevD.85.064019
  5. Amarilla L, Eiroa EF (2013) Shadow of a Kaluza-Klein rotating dilaton black hole. Phys Rev D 87:044,057(7). doi: 10.1103/PhysRevD.87.044057
  6. Amarilla L, Eiroa EF, Giribet G (2010) Null geodesics and shadow of a rotating black hole in extended Chern-Simons modified gravity. Phys Rev D 81(12):124,045(8). doi: 10.1103/PhysRevD.81.124045
  7. Ames WL, Thorne KS (1968) The Optical appearance of a star that is collapsing through its gravitational radius. Astrophys J 151:659–670. doi: 10.1086/149465 CrossRefADSGoogle Scholar
  8. Armitage PJ, Reynolds CS (2003) The variability of accretion on to Schwarzschild black holes from turbulent magnetized discs. Mon Not R Astron Soc 341(3):1041–1050. doi: 10.1046/j.1365-8711.2003.06491.x CrossRefADSGoogle Scholar
  9. Ashtekar A (2015) Viewpoint: the simplicity of black holes. Physics 8(34). doi: 10.1103/Physics.8.34
  10. Balick B, Brown RL (1974) Intense sub-arcsecond structure in the galactic center. Astrophys J 194:265–270. doi: 10.1086/153242 CrossRefADSGoogle Scholar
  11. Bambi C, Yoshida N (2010) Shape and position of the shadow in the \(\delta =2\) Tomimatsu–Sato spacetime. Class Quantum Gravity 27(20):205,006(10). doi: 10.1088/0264-9381/27/20/205006 Google Scholar
  12. Bardeen JM (1973) Timelike and null geodesics in the Kerr metric. In: DeWitt C, DeWitt BS (eds) Black holes pp 215–239, New YorkGoogle Scholar
  13. Bardeen JM, Cunningham CT (1973) The optical appearance of a star orbiting an extreme Kerr black hole. Astrophys J 183:237–264. doi: 10.1086/152223 CrossRefADSGoogle Scholar
  14. Bohn A, Hébert F, Throwe W, Bunandar D, Henriksson K, Scheel MA, Taylor NW (2015) What does a binary black hole merger look like? Class Quantum Gravity 32(6):065,002(16). doi: 10.1088/0264-9381/32/6/065002, arXiv:1410.7775 Google Scholar
  15. Britzen S (2012) Verbotenes Universum: Die Zeit der Schwarzen Löcher. Goldegg Verlag, WienGoogle Scholar
  16. Broderick AE, Loeb A (2009) Portrait of a black hole. Sci Am 301:42–49. doi: 10.1038/scientificamerican1209-42 CrossRefGoogle Scholar
  17. Broderick AE, Narayan R (2006) On the Nature of the Compact Dark Mass at the Galactic Center. Astrophys J 638:L21–L24. doi: 10.1086/500930 Google Scholar
  18. Broderick AE, Loeb A, Narayan R (2009) The event horizon of Sagittarius A*. Astrophys J 701(2):1357–1366. doi: 10.1088/0004-637X/701/2/1357 CrossRefADSGoogle Scholar
  19. Broderick AE, Loeb A, Reid MJ (2011) Localizing Sagittarius A* and M87 on Microarcsecond scales with millimeter VLBI. Astrophys J 735(1):57(18), doi: 10.1088/0004-637X/735/1/57 Google Scholar
  20. Broderick AE, Johannsen T, Loeb A, Psaltis D (2014) Testing the no-hair theorem with event horizon telescope observations of Sagittarius A*. Astrophys J 784(1):7(14pp). doi: 10.1088/0004-637X/784/1/7 Google Scholar
  21. Broderick AE, Narayan R, Kormendy J, Perlman ES, Rieke MJ, Doeleman SS (2015) The Event Horizon of M87. Astrophys J 805(2): doi: 10.1088/0004-637X/805/2/179, arXiv:1503.03873 Google Scholar
  22. Bromley BC, Melia F, Liu S (2001) Polarimetric imaging of the massive black hole at the Galactic Center. Astrophys J 555(2):L83–L86. doi: 10.1086/322862 CrossRefADSGoogle Scholar
  23. Cardoso V, Crispino LCB, Macedo CFB, Okawa H, Pani P (2014) Light rings as observational evidence for event horizons: Long-lived modes, ergoregions and nonlinear instabilities of ultracompact objects. Phys Rev D 90:044,069(10). doi: 10.1103/PhysRevD.90.044069
  24. Chandrasekhar S (1983) The mathematical theory of black holes, International Series of Monographs on Physics, vol 69. Oxford University Press, OxfordGoogle Scholar
  25. Cornwell TJ (2009) Hogbom’s CLEAN algorithm. Impact on astronomy and beyond. Astron Astrophys 500(65–66):1974. doi: 10.1051/0004-6361/200912148 (commentary on Högbom (1974))
  26. Dexter J (2011) Radiative Models of Sagittarius A* and M87 from Relativistic MHD Simulations. Dissertation, University of Washington, Washington.
  27. Dexter J, Fragile PC (2013) Tilted black hole accretion disc models of Sagittarius A*: time-variable millimetre to near-infrared emission. Mon Not R Astron Soc 432:2252–2272. doi: 10.1093/mnras/stt583 CrossRefADSGoogle Scholar
  28. Dexter J, Agol E, Fragile PC, McKinney JC (2012) Radiative models of Sagittarius A* and M87 from relativistic MHD simulations. J Phys: Conf Ser 372(1):012,023(8). doi: 10.1088/1742-6596/372/1/012023 Google Scholar
  29. Doeleman S (2009) Imaging an Event Horizon: submm-VLBI of a Super Massive Black Hole. Astro2010: The Astronomy and Astrophysics Decadal Survey, Science White Papers 68, a Science White Paper to the Decadal Review Committee, arXiv:0906.3899
  30. Doeleman S (2010) Building an Event Horizon Telescope: (sub)mm VLBI in the ALMA era. In: Proceedings of Science PoS (10th EVN Symposium)(053). 10th European VLBI Network Symposium and EVN Users Meeting: VLBI and the new generation of radio arrays, September 20 – 24, 2010, Manchester Uk
  31. Doeleman SS, Weintroub J, Rogers AEE, Plambeck R, Freund R, Tilanus RPJ, Friberg P, Ziurys LM, Moran JM, Corey B, Young KH, Smythe DL, Titus M, Marrone DP, Cappallo RJ, Bock DCJ, Bower GC, Chamberlin R, Davis GR, Krichbaum TP, Lamb J, Maness H, Niell AE, Roy A, Strittmatter P, Werthimer D, Whitney AR, Woody D (2008) Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre. Lett Nat 455:78–80. doi: 10.1038/nature07245 CrossRefGoogle Scholar
  32. Doeleman SS, Fish VL, Schenck DE, Beaudoin C, Blundell R, Bower GC, Broderick AE, Chamberlin R, Freund R, Friberg P, Gurwell MA, Ho PTP, Honma M, Inoue M, Krichbaum TP, Lamb J, Loeb A, Lonsdale C, Marrone DP, Moran JM, Oyama T, Plambeck R, Primiani RA, Rogers AEE, Smythe DL, SooHoo J, Strittmatter P, Tilanus RPJ, Titus M, Weintroub J, Wright M, Young KH, Ziurys LM (2012) Jet-launching structure resolved near the supermassive black hole in M87. Science 338(6105):355–358. doi: 10.1126/science.1224768 CrossRefADSGoogle Scholar
  33. Dyson FW, Eddington AS, Davidson C (1920) A determination of the deflection of light by the sun’s gravitational field, from observations made at the total eclipse of May 29, 1919. Philos Trans R Soc Lond A: Math Phys Eng Sci 220(571–581):291–333. doi: 10.1098/rsta.1920.0009 Google Scholar
  34. Eckart A, Genzel R (1996) Observations of stellar proper motions near the Galactic Centre. Nature 383(5):415–417. doi: 10.1038/383415a0 Google Scholar
  35. Eckart A, Genzel R (1997) Stellar proper motions in the central 0.1 pc of the Galaxy. Mon Not R Astron Soc 284(3):576–598. doi: 10.1093/mnras/284.3.576 CrossRefADSGoogle Scholar
  36. Eckart A, Schödel R, Straubmeier C (2005) The black hole at the center of the Milky Way. Imperial College Press, Covent Garden. doi: 10.1142/9781860947391
  37. Einstein A (1905) Zur Elektrodynamik bewegter Körper. Ann der Phys 17:891–921. Google Scholar
  38. Einstein A (1915a) Die Feldgleichungen der Gravitation. Sitzungsberichte der Königlich-Preußischen Akademie der Wissenschaften, pp 844–847.
  39. Einstein A (1915b) Zur allgemeinen Relativitätstheorie. Sitzungsberichte der Königlich-Preußischen Akademie der Wissenschaften, pp 778–786.
  40. Einstein A (1915c) Zur allgemeinen Relativitätstheorie (Nachtrag). Sitzungsberichte der Königlich-Preußischen Akademie der Wissenschaften, pp 799–801.
  41. Einstein A (1916) Die Grundlage der allgemeinen Relativitätstheorie. Ann der Phys 49(7):769–822. Google Scholar
  42. Eisenhauer F, Schödel R, Genzel R, Ott T, Tecza M, Abuter R, Eckart A, Alexander T (2003) A Geometric Determination of the Distance to the Galactic Center. Astrophys J Lett 597(2):L121–L124. doi: 10.1086/380188 Google Scholar
  43. Eisenhauer F, Perrin G, Straubmeier C, Brandner W, Boehm A, Cassaing F, Clenet Y, Dodds-Eden K, Eckart A, Fedou P, Gendron E, Genzel R, Gillessen S, Graeter A, Gueriau C, Hamaus N, Haubois X, Haug M, Henning T, Hippler S, Hofmann R, Hormuth F, Houairi K, Kellner S, Kervella P, Klein R, Kolmeder J, Laun W, Lena P, Lenzen R, Marteaud M, Meschke D, Naranjo V, Neumann U, Paumard T, Perger M, Perret D, Rabien S, Ramos JR, Reess JM, Rohloff RR, Rouan D, Rousset G, Ruyet B, Schropp M, Talureau B, Thiel M, Ziegleder J, Ziegler D (2007) GRAVITY: microarcsecond astrometry and deep interferometric imaging with the VLTI. In: Proceedings of the International Astronomical Union, symposium No. 248, vol 3, pp 100–101. doi: 10.1017/S1743921308018723 Google Scholar
  44. Eisenhauer F, Perrin G, Brandner W, Straubmeier C, Böhm A, Baumeister H, Cassaing F, Clénet Y, Dodds-Eden K, Eckart A, Gendron E, Genzel R, Gillessen S, Gräter A, Gueriau C, Hamaus N, Haubois X, Haug M, Henning T, Hippler S, Hofmann R, Hormuth F, Houairi K, Kellner S, Kervella P, Klein R, Kolmeder J, Laun W, Léna P, Lenzen R, Marteaud M, Naranjo V, Neumann U, Paumard T, Rabien S, Ramos JR, Reess JM, Rohloff D R-R Rouan, Rousset G, Ruyet B, Sevin A, Thiel M, Ziegleder J, Ziegler D (2009) GRAVITY: Microarcsecond Astrometry and Deep Interferometric Imaging with the VLT. In: Moorwood (2009), pp 361–365. doi: 10.1007/978-1-4020-9190-2_61 Google Scholar
  45. Ewing A (1964) ‘Black Holes’ in space. Sci News Lett 85(3):39. Google Scholar
  46. Falcke H, Melia F, Agol E (2000) Viewing the shadow of the black hole at the Galactic Center. Astrophys J 528:L13–L16. doi: 10.1086/312423 CrossRefADSGoogle Scholar
  47. Falcke H, Hehl F (eds) (2003) The galactic black hole: lectures on general relativity and astrophysics. Cosmology and Gravitation, IoP Publishing, Bristol, U.K, Series in High Energy PhysicsGoogle Scholar
  48. Falcke H, Markoff SB (2013) Toward the event horizon—the supermassive black hole in the Galactic Center. Class Quantum Gravity 30(24):244,003(24pp). doi: 10.1088/0264-9381/30/24/244003, published in “Astrophysical black holes”, ed. by D. Merritt and L. RezzollaGoogle Scholar
  49. Fish V (2010) Observing event horizons with high-frequency VLBI. In: Proceedings of Science PoS (10th EVN Symposium). 10th european VLBI network symposium and EVN users meeting: VLBI and the new generation of radio arrays, 20–24 Sept 2010, Manchester, Uk.
  50. Fish VL, Doeleman SS (2009) Observing a black hole event horizon: (sub)millimeter VLBI of Sgr A*. In: Proceedings of the International Astronomical Union, vol 5, pp 271–276. doi: 10.1017/S1743921309990500, symposium S261 (Relativity in Fundamental Astronomy: Dynamics, Reference Frames, and Data Analysis)Google Scholar
  51. Fish V, Alef W, Anderson J, Asada K, Baudry A, Broderick A, Carilli C, Colomer F, Conway J, Dexter J, Doeleman S, Eatough R, Falcke H, Frey S, Gabányi K, Gálvan-Madrid R, Gammie C, Giroletti M, Goddi C, Gómez JL, Hada K, Hecht M, Honma M, Humphreys E, Impellizzeri V, Johannsen T, Jorstad S, Kino M, Körding E, Kramer M, Krichbaum T, Kudryavtseva N, Laing R, Lazio J, Loeb A, Lu RS, Maccarone T, Marscher A, Martí-Vidal I, Martins C, Matthews L, Menten K, Miller J, Miller-Jones J, Mirabel F, Muller S, Nagai H, Nagar N, Nakamura M, Paragi Z, Pradel N, Psaltis D, Ransom S, Rodríguez L, Rottmann H, Rushton A, Shen ZQ, Smith D, Stappers B, Takahashi R, Tarchi A, Tilanus R, Verbiest J, Vlemmings W, Walker RC, Wardle J, Wiik K, Zackrisson E, Zensus JA (2013) High-Angular-Resolution and High-Sensitivity Science Enabled by Beamformed ALMA, whitepaper, arXiv:1309.3519
  52. Fish VL, Johnson MD, Lu RS, Doeleman SS, Bouman KL, Zoran D, Freeman WT, Psaltis D, Narayan R, Pankratius V, Broderick AE, Gwinn CR, Vertatschitsch LE (2014) Imaging an Event Horizon: mitigation of scattering toward Sagittarius A*. Astrophys J 795:134(7pp). doi: 10.1088/0004-637X/795/2/134 Google Scholar
  53. Genzel R (2014) Massive black holes: evidence, demographics and cosmic evolution, In: Blandford R, Sevrin A (eds) Proceedings of the 26th solvay conference on physics: “Astrophysics and Cosmology”. World Scientific, arXiv:1410.8717
  54. Genzel R, Eisenhauer F, Gillessen S (2010) The Galactic Center massive black hole and nuclear star cluster. Rev Mod Phys 82:3121. doi: 10.1103/RevModPhys.82.3121, arXiv:1006.0064 Google Scholar
  55. Ghez AM, Klein BL, Morris M, Becklin EE (1998) High Proper-Motion Stars in the Vicinity of Sagittarius A*: Evidence for a Supermassive Black Hole at the Center of Our Galaxy. Astrophys J 509(2):678. doi: 10.1086/306528 Google Scholar
  56. Ghez AM, Salim S, Hornstein SD, Tanner A, Lu JR, Morris M, Becklin EE, Duchêne G (2005) Stellar Orbits around the Galactic Center Black Hole. Astrophys J 620(2):744. doi: 10.1086/427175 Google Scholar
  57. Gillessen S, Eisenhauer F, Quataert E, Genzel R, Paumard T, Trippe S, Ott T, Abuter R, Eckart A, Lagage PO, Lehnert MD, Tacconi LJ, Martins F (2006) Variations in the spectral slope of Sagittarius A* during a Near-Infrared Flare. Astrophys J Lett 640(2):L163. doi: 10.1086/503557 CrossRefADSGoogle Scholar
  58. Ghez AM, Salim S, Weinberg NN, Lu JR, Do T, Dunn JK, Matthews K, Morris MR, Yelda S, Becklin EE, Kremenek T, Milosavljevic M, Naiman J (2008) Measuring Distance and Properties of the Milky Way’s Central Supermassive Black Hole with Stellar Orbits. Astrophys J 689(2):1044–1062. doi: 10.1086/592738 Google Scholar
  59. Gillessen S, Eisenhauer F, Trippe S, Alexander T, Genzel R, Martins F, Ott T (2009) Monitoring Stellar Orbits around the Massive Black Hole in the Galactic Center. Astrophys J 692(2):1075–1109. doi: 10.1088/0004-637X/692/2/1075 Google Scholar
  60. Goss WM, Brown RL, Lo KY (2003) The Discovery of Sgr A*. Astron Nachr 324(S1):497–504. doi: 10.1002/asna.200385047 (Proceedings of the Galactic Center Workshop 2002—The central 300 parsecs of the Milky Way, arXiv:astro-ph/0305074)
  61. Grenzebach A, Perlick V, Lämmerzahl C (2014) Photon regions and shadows of Kerr–Newman–NUT Black Holes with a cosmological constant. Phys Rev D 89:124,004(12). doi: 10.1103/PhysRevD.89.124004. arXiv:1403.5234
  62. Grenzebach A (2015) Aberrational effects for shadows of black holes. In: Puetzfeld et al Proceedings of the 524th WE-Heraeus-Seminar “Equations of Motion in Relativistic Gravity”, held in Bad Honnef, Germany, 17–23 Feb 2013, pp 823–832. doi: 10.1007/978-3-319-18335-0_25, arXiv:1502.02861 Google Scholar
  63. Grenzebach A, Perlick V, Lämmerzahl C (2015) Photon regions and shadows of accelerated black holes. Int J Mod Phys D 24(9):1542,024(22). doi: 10.1142/S0218271815420249 (“Special Issue Papers” of the “7th Black Holes Workshop”, Aveiro, Portugal, arXiv:1503.03036)
  64. Gürlebeck N (2015) No-Hair Theorem for Black Holes in Astrophysical Environments. Phys Rev Lett 114:151,102(5). doi: 10.1103/PhysRevLett.114.151102, arXiv:1503.03240
  65. Hawking SW (1974) Black hole explosions? Nature 248:30–31. doi: 10.1038/248030a0 Google Scholar
  66. Hawking SW (1975) Particle creation by black holes. Commun Math Phys 43(3):199–220. doi: 10.1007/BF02345020 Google Scholar
  67. Hawking SW (1976) Black holes and thermodynamics. Phys Rev D 13(2):191–197. doi: 10.1103/PhysRevD.13.191 CrossRefADSGoogle Scholar
  68. Hioki K, Maeda Ki (2009) Measurement of the Kerr spin parameter by observation of a compact object’s shadow. Phys Rev D 80(2):024,042(9). doi: 10.1103/PhysRevD.80.024042
  69. Högbom JA (1974) Aperture synthesis with a non-regular distribution of interferometer baselines. Astron Astrophys Suppl 15:417–426ADSGoogle Scholar
  70. Högbom JA (2003) Early Work in Imaging. In: Zensus et al. Proceedings of a conference in honor of Kenneth I. Kellermann on the occasion of his 65th Birthday held at the National Radio Astronomy Observatory, Green Bank, West Virginia, USA, 10–12 Oct 2002Google Scholar
  71. Huang L, Cai M, Shen ZQ, Yuan F (2007) Black hole shadow image and visibility analysis of Sagittarius \(A^{*}\). Mon Not R Astron Soc 379(3):833–840. doi: 10.1111/j.1365-2966.2007.11713.x CrossRefADSGoogle Scholar
  72. Inoue M, Blundell R, Brisken W, Chen MT, Doeleman S, Fish V, Ho P, Moran J, Napier P, the Greenland Telescope (GLT) Team (2012) Submm VLBI toward Shadow Image of Super Massive Black Hole. In: Proceedings of Science RTS2012(018)., resolving the Sky—Radio Interferometry: Past, Present and Future, 17–20 April 2012, Manchester Uk
  73. Inoue M, Algaba-Marcos JC, Asada K, Blundell R, Brisken W, Burgos R, Chang CC, Chen MT, Doeleman SS, Fish V, Grimes P, Han J, Hirashita H, Ho PTP, Hsieh SN, Huang T, Jiang H, Keto E, Koch PM, Kubo DY, Kuo CY, Liu B, Martin-Cocher P, Matsushita S, Meyer-Zhao Z, Nakamura M, Napier P, Nishioka H, Nystrom G, Paine S, Patel N, Pradel N, Pu HY, Raffin PA, Shen HY, Snow W, Srinivasan R, Wei TS (2014) Greenland telescope project: direct confirmation of black hole with sub-millimeter VLBI. Radio Sci 49(7):564–571. doi: 10.1002/2014RS005450, arXiv:1407.2450 Google Scholar
  74. James O, von Tunzelmann E, Paul F, Thorne KS (2015) Gravitational lensing by spinning black holes in astrophysics, and in the movie Interstellar. Class Quantum Gravity 32(6):065,001(41). doi: 10.1088/0264-9381/32/6/065001 Google Scholar
  75. Johannsen T (2012a) Testing General Relativity in the Strong-Field Regime with Observations of Black Holes in the Electromagnetic Spectrum. Phd thesis, University of Arizona, Tucson. Google Scholar
  76. Johannsen T (2012b) Testing the no-hair theorem with Sgr A*. Adv Astron 486750(9). doi: 10.1155/2012/486750 Google Scholar
  77. Johannsen T (2013) Photon Rings around Kerr and Kerr-like black holes. Astrophys J 777(2):170(12). doi: 10.1088/0004-637X/777/2/170 Google Scholar
  78. Johannsen T, Psaltis D (2011) Metric for rapidly spinning black holes suitable for strong-field tests of the no-hair theorem. Phys Rev D 83(12):124,015(10). doi: 10.1103/PhysRevD.83.124015
  79. Kardashev NS, Novikov ID, Lukash VN, Pilipenko SV, Mikheeva EV, Bisikalo DV, Wiebe DS, Doroshkevich AG, Zasov AV, Zinchenko II, Ivanov PB, Kostenko VI, Larchenkova TI, Likhachev SF, Malov IF, Malofeev VM, Pozanenko AS, Smirnov AV, Sobolev AM, Cherepashchuk AM, Shchekinov YA (2014) Review of scientific topics for Millimetron space observatory. Uspekhi Fizicheskih Nauk 184(12):1319–1352. doi: 10.3367/UFNr.0184.201412c.1319, english translation available on, arXiv:1502.06071 Google Scholar
  80. Kellermann KI (1972) Intercontinental radio astronomy. Sci Am 226:72–83. doi: 10.1038/scientificamerican0272-72 CrossRefGoogle Scholar
  81. Kennefick D (2009) Testing relativity from the 1919 eclipse—a question of bias. Phys Today 37–42. doi: 10.1063/1.3099578 Google Scholar
  82. Kerr RP (1963) Gravitational field of a spinning mass as an example of algebraically special metrics. Phys Rev Lett 11(5):237–238. doi: 10.1103/PhysRevLett.11.237 MathSciNetCrossRefzbMATHADSGoogle Scholar
  83. Kormendy J, Ho LC (2013) Coevolution (Or Not) of Supermassive black holes and host galaxies. Ann Rev Astron Astrophys 51:511–653. doi: 10.1146/annurev-astro-082708-101811, arXiv:1304.7762 Google Scholar
  84. Krichbaum TP, Graham DA, Witzel A, Greve A, Wink JE, Grewing M, Colomer F, de Vicente P, Gómez-González J, Baudry A, Zensus JA (1998) VLBI observations of the galactic center source Sgr A* at 86 GHz and 215 GHz. Astron Astrophys 335(3):L106–L110.
  85. Krichbaum TP (2010) Imaging Super Massive Black Holes and the Origin of Jets—Global mm- and sub-mm-VLBI Studies of Compact Radio Sources., a Whitepaper and Proposal for submm-VLBI with APEX and ALMA, Max-Planck-Institut für Radioastronomie, Bonn, Germany
  86. Krichbaum TP, Roy A, Wagner J, Rottmann H, Hodgson JA, Bertarini A, Alef W, Zensus JA, Marscher A, Jorstad S, Freund R, Marrone D, Strittmatter P, Ziurys L, Blundell R, Weintroub J, Young K, Fish V, Doeleman S, Bremer M, Sanchez S, Fuhrmann L, Angelakis E, Karamanavis V (2012) Zooming towards the Event Horizon—mm-VLBI today and tomorrow. Proc Sci 178(055). Proceedings of the 11th European VLBI Network Symposium & Users Meeting, 20–24 Sept, Bordeaux, France
  87. Kruesi L (2012) How we know black holes exist. Astronomy Magazine April:24–29.
  88. Li Z, Bambi C (2014) Measuring the Kerr spin parameter of regular black holes from their shadow. J Cosmol Astropart Phys 01(041). doi: 10.1088/1475-7516/2014/01/041 Google Scholar
  89. Lu RS, Broderick AE, Baron F, Monnier JD, Fish VL, Doeleman SS, Pankratius V (2014) Imaging the supermassive black hole shadow and jet base of M87 with the event horizon telescope. Astrophys J 788(2):120(10pp). doi: 10.1088/0004-637X/788/2/120 Google Scholar
  90. Luminet JP (1979) Image of a spherical black hole with thin accretion disk. Astron Astrophys 75(1-2):228–235.
  91. Luminet JP (1998) Black Holes: A General Introduction. In: Hehl et al Proceedings of the 179th W.E. Heraeus Seminar held at Bad Honnef, Germany, 18–22 August 1997. pp 3–34. doi: 10.1007/978-3-540-49535-2_1, arXiv:astro-ph/9801252 Google Scholar
  92. Lynden-Bell D (1969) Galactic nuclei as collapsed old quasars. Nature 223:690–694. doi: 10.1038/223690a0 CrossRefADSGoogle Scholar
  93. Lynden-Bell D, Rees MJ (1971) On Quasars, Dust and the Galactic Centre. Mon Not R Astron Soc 152(4):461–475. doi: 10.1093/mnras/152.4.461 Google Scholar
  94. Lyubenova M, Kissler-Patig M (eds) (2011) An Expanded View of the Universe—Science with the European Extremely Large Telescope. European Southern Observatory—E-ELT Science Office, Garching.
  95. Maiolino R (2008) Prospects for AGN studies with ALMA. New Astron Rev 52:339–357. doi: 10.1016/j.newar.2008.06.012 CrossRefADSGoogle Scholar
  96. Marck JA (1996) Short-cut method of solution of geodesic equations for Schwarzschild black hole. Class Quantum Gravity 13:393–402. doi: 10.1088/0264-9381/13/3/007 MathSciNetCrossRefzbMATHADSGoogle Scholar
  97. Mazur PO, Mottola E (2001) Gravitational Condensate stars: an alternative to black holes, unpublished, arXiv:gr-qc/0109035
  98. Melia F (2003) The black hole at the center of our galaxy. Princeton University Press, Princeton.
  99. Melia F, Falcke H (2001) The supermassive black hole at the Galactic Center. Ann Rev Astron Astrophys 39:309–352. doi: 10.1146/annurev.astro.39.1.309 CrossRefADSGoogle Scholar
  100. Meyer L, Ghez AM, Schödel R, Yelda S, Boehle A, Lu JR, Do T, Morris MR, Becklin EE, Matthews K (2012a) The Shortest-Known-Period Star Orbiting Our Galaxy’s Supermassive Black Hole. Science 338(6103):84–87. doi: 10.1126/science.1225506 Google Scholar
  101. Misner CW, Thorne KS, Wheeler JA (1973) Gravitation. W. H, Freeman and Company, San FranciscoGoogle Scholar
  102. Moran JM (2003) Thiry years of VLBI: early days, successes, and future. In: Zensus et al proceedings of a conference in honor of Kenneth I. Kellermann on the occasion of his 65th Birthday held at the National Radio Astronomy Observatory, pp 1–10, Green Bank, West Virginia, USA, 10–12 Oct 2002Google Scholar
  103. Morris MR, Meyer L, Ghez AM (2012) Galactic center research: manifestations of the central black hole. Res Astron Astrophys 12(8):995–1020. doi: 10.1088/1674-4527/12/8/007 CrossRefADSGoogle Scholar
  104. Mościbrodzka M, Gammie CF, Dolence JC, Shiokawa H (2011) Pair production in low-luminosity galactic nuclei. Astrophys J 735(1):9(14). doi: 10.1088/0004-637X/735/1/9 Google Scholar
  105. Mościbrodzka M, Shiokawa H, Gammie CF, Dolence JC (2012) The Galactic Center weather forecast. Astrophys J Lett 752(1):L1(6). doi: 10.1088/2041-8205/752/1/L1 Google Scholar
  106. Mościbrodzka M, Falcke H, Shiokawa H, Gammie CF (2014) Observational appearance of inefficient accretion flows and jets in 3D GRMHD simulations: application to Sgr A*. Astron Astrophys 570:A7(10). doi: 10.1051/0004-6361/201424358 Google Scholar
  107. Müller A (2004) Black Hole Astrophysics. Magnetohydrodynamics on the Kerr Geometry. Dissertation, University of Heidelberg, Heidelberg.
  108. Nakamura M, Algaba JC, Asada K, Chen B, Chen MT, Han J, Ho PHP, Hsieh SN, Huang T, Inoue M, Koch P, Kuo CY, Martin-Cocher P, Matsushita S, Meyer-Zhao Z, Nishioka H, Nystrom G, Pradel N, Pu HY, Raffin P, Shen HY, Tseng CY, the Greenland Telescope Project Team (2013) Greenland telescope project: a direct confirmation of black hole with submillimeter VLBI. EPJ Web Conf 61(01):008. doi: 10.1051/epjconf/20136101008, arXiv:1310.1665 Google Scholar
  109. Ortiz N, Sarbach O, Zannias T (2015) The shadow of a naked singularity. Phys Rev D 92(044):035. doi: 10.1103/PhysRevD.92.044035, arXiv:1505.07017
  110. Petri M (2003a) Compact anisotropic stars with membrane—a new class of exact solutions to the Einstein field equations, unpublished, arXiv:gr-qc/0306063
  111. Petri M (2003b) The holostar—a self-consistent model for a compact self-gravitating object, unpublished, arXiv:gr-qc/0306066
  112. Perlick V (2004) Gravitational lensing form a spacetime perspective. Living Rev Relativ 7(9). doi: 10.12942/lrr-2004-9
  113. Petit JP (1995) Das Schwarze Loch. Die Abenteurer des Anselm Wüßtegern, Vieweg, Braunschweig; Wiesbaden.
  114. Psaltis D, Narayan R, Fish VL, Broderick AE, Loeb A, Doeleman SS (2015) Event Horizon telescope evidence for alignment of the black hole in the center of the Milky Way with the inner stellar disk. Astrophys J 798(1):15. doi: 10.1088/0004-637X/798/1/15 CrossRefADSGoogle Scholar
  115. Rees MJ (1974) Black holes. Observatory 94:168–179ADSGoogle Scholar
  116. Rees MJ (1984) Black Hole Models for Active Galactic Nuclei. Ann Rev Astron Astrophys 22(1):471–506. doi: 10.1146/annurev.aa.22.090184.002351 Google Scholar
  117. Ricarte A, Dexter J (2015) The Event Horizon Telescope: exploring strong gravity and accretion physics. Mon Not R Astron Soc 446(2):1973–1987. doi: 10.1093/mnras/stu2128, arXiv:1410.2899 Google Scholar
  118. Salim S, Gould A (1999) Sagittarius A* “Visual Binaries”: a direct measurement of the galactocentric distance. Astrophys J 523(2):633–641. doi: 10.1086/307756 CrossRefADSGoogle Scholar
  119. Schödel R, Eckart A, Straubmeier C, Pott JU (2005) NIR Observations of the Galactic Center. In: Röser S (ed) From cosmological structures to the Milky Way, Reviews in Modern Astronomy, vol 18. Wiley-VCH, Weinheim, pp 195–203. Google Scholar
  120. Schwarzschild K (1916) Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin (VII):189–196. digitale Volltext-Ausgabe in Wikisource
  121. von Soldner JG (1804) Ueber die Ablenkung eines Lichtstrals von seiner geradlinigen Bewegung. Astronomisches Jahrbuch für das Jahr 1804, pp 161–172.
  122. Spencer RE (1991) Very Long Baseline Interferometry: current status and future prospects. Vistas Astron 34:61–68. doi: 10.1016/0083-6656(91)90020-S CrossRefADSGoogle Scholar
  123. Synge JL (1966) The escape of photons from gravitationally intense stars. Monthly Not R Astron Soc 131:463–466. Google Scholar
  124. Takahashi R (2004) Shapes and Positions of Black Hole Shadows in Accretion Disks and Spin Parameters of Black Holes. Astrophys J 611(2):996–1004. doi: 10.1086/422403 Google Scholar
  125. Tanaka Y, Nandra K, Fabian AC, Inoue H, Otani C, Dotani T, Hayashida K, Iwasawa K, Kii T, Kunieda H, Makino F, Matsuoka M (1995) Gravitationally redshifted emission implying an accretion disk and massive black hole in the active galaxy MCG-6-30-15. Lett Nat 375:659–661. doi: 10.1038/375659a0 Google Scholar
  126. Thiébaut E (2009) Image reconstruction with optical interferometers. New Astron Rev 53(11–12):312–328. doi: 10.1016/j.newar.2010.07.011 (proceedings: VLTI summerschool)
  127. Thompson AR, Moran JM, Swenson GW Jr (2004) Interferometry and synthesis in radio astronomy, 2nd edn. Wiley, Weinheim. doi: 10.1002/9783527617845
  128. Tilanus RPJ, Krichbaum TP, Zensus JA, Baudry A, Bremer M, Falcke H, Giovannini G, Laing R, van Langevelde HJ, Vlemmings W (2014) Future mmVLBI Research with ALMA: A European vision, whitepaper on mm-VLBI with ALMA, arXiv:1406.4650
  129. Tsukamoto N, Li Z, Bambi C (2014) Constraining the spin and the deformation parameters from the black hole shadow. J Cosmol Astropart Phys 6:043(21). doi: 10.1088/1475-7516/2014/06/043, arXiv:1403.0371 Google Scholar
  130. Vincent FH, Yan W, Straub O, Zdziarski AA, Abramowicz MA (2015) A magnetized torus for modeling Sagittarius A* millimeter images and spectra. Astron Astrophys 574(A48): doi: 10.1051/0004-6361/201424306 Google Scholar
  131. de Vries A (2000) The apparent shape of a rotating charged black hole, closed photon orbits and the bifurcation set \(A_{4}\). Class Quantum Gravity 17:123–144. doi: 10.1088/0264-9381/17/1/309 CrossRefzbMATHADSGoogle Scholar
  132. Walsh D, Carswell RF, Weymann RJ (1979) 0957 + 561 A, B: twin quasistellar objects or gravitational lens? Nature 279:381–384. doi: 10.1038/279381a0 CrossRefADSGoogle Scholar
  133. Will CM (1988) Henry Cavendish, Johann von Soldner, and the deflection of light. Am J Phys 56(5):413–415. doi: 10.1119/1.15622 CrossRefADSGoogle Scholar
  134. Younsi Z, Wu K (2013) Covariant Compton scattering kernel in general relativistic radiative transfer. Mon Not R Astron Soc 433(2):1054–1081. doi: 10.1093/mnras/stt786 CrossRefADSGoogle Scholar
  135. Younsi Z, Wu K, Fuerst SV (2012) General relativistic radiative transfer: formulation and emission from structured tori around black holes. Astron Astrophys 545:A13(3). doi: 10.1051/0004-6361/201219599 Google Scholar
  136. Yumoto A, Nitta D, Chiba T, Sugiyama N (2012) Shadows of multi-black holes: analytic exploration. Phys Rev D 86(10):103,001(10). doi: 10.1103/PhysRevD.86.103001
  137. Zakharov AF, De Paolis F, Ingrosso G, Nucita AA (2012) Shadows as a tool to evaluate black hole parameters and a dimension of spacetime. New Astron Rev 56(2–3):64–73. doi: 10.1016/j.newar.2011.09.002 CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.ZARM—Zentrum für angewandte Raumfahrttechnologie und MikrogravitationUniversität BremenBremenGermany

Personalised recommendations