Skip to main content

Nonstandard Lebesgue Spaces

  • Chapter
  • First Online:
An Introductory Course in Lebesgue Spaces

Part of the book series: CMS Books in Mathematics ((CMSBM))

  • 2066 Accesses

Abstract

In recent years, it had become apparent that the plethora of existing function spaces were not sufficient to model a wide variety of applications, e.g., in the modeling of electrorheological fluids, thermorheological fluids, in the study of image processing, in differential equations with nonstandard growth, among others. Thus, naturally, new fine scales of function spaces have been introduced, namely variable exponent spaces and grand spaces. In this chapter we study variable exponent Lebesgue spaces and grand Lebesgue spaces. In variable exponent Lebesgue spaces we study the problem of normability, denseness, completeness, embedding, among others. We give a brisk introduction to grand Lebesgue spaces via Banach function space theory, dealing with the problem of normability, embeddings, denseness, reflexivity, and the validity of a Hardy inequality in the aforementioned spaces.

Give more spaces to functions.

Alois Kufner

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 39.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Bennett and R. Sharpley. Interpolation of operators, volume 129 of Pure and Applied Mathematics. Academic Press, Inc., Boston, MA, 1988.

    Google Scholar 

  2. D. V. Cruz-Uribe and A. Fiorenza. Variable Lebesgue spaces. Foundations and harmonic analysis. New York, NY: Birkhäuser/Springer, 2013.

    Book  MATH  Google Scholar 

  3. L. Diening, P. Harjulehto, Hästö, and M. Růžička. Lebesgue and Sobolev spaces with variable exponents. Springer-Verlag, Lecture Notes in Mathematics, vol. 2017, Berlin, 2011.

    Google Scholar 

  4. A. Fiorenza and G.E. Karadzhov. Grand and small Lebesgue spaces and their analogs. Z. Anal. Anwend., 23(4):657–681, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  5. L. Greco, T. Iwaniec, and C. Sbordone. Inverting the p-harmonic operator. Manuscr. Math., 92(2):249–258, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  6. T. Iwaniec and C. Sbordone. On the integrability of the Jacobian under minimal hypotheses. Arch. Ration. Mech. Anal., 119(2):129–143, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  7. O. Kováčik and J. Rákosník. On spaces L p(x) and W k, p(x). Czech. Math. J., 41(4):592–618, 1991.

    Google Scholar 

  8. W. Orlicz. Über konjugierte Exponentenfolgen. Stud. Math., 3: 200–211, 1931.

    MATH  Google Scholar 

  9. L. Pick, A. Kufner, O. John, and S. Fučík. Function spaces. Volume 1. 2nd revised and extended ed. Berlin: de Gruyter, 2013.

    MATH  Google Scholar 

  10. H. Rafeiro and E. Rojas, Espacios de Lebesgue con exponente variable. Un espacio de Banach de funciones medibles. Caracas: Ediciones IVIC, xxii–134, 2014.

    Google Scholar 

  11. S. G. Samko. Convolution and potential type operators in \(L^{p(x)}(\mathbb{R}^{n})\). Integral Transforms Spec. Funct., 7(3-4):261–284, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  12. S. G. Samko. Convolution type operators in L p(x). Integral Transforms Spec. Funct., 7(1-2):123–144, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  13. I.I. Sharapudinov. Topology of the space \(\mathcal{L}^{p(t)}([0,t])\). Math. Notes, 26: 796–806, 1979.

    Google Scholar 

  14. I.I. Sharapudinov. Approximation of functions in the metric of the space L p(t) ([a,b]) and quadrature formulae. Constructive function theory, Proc. int. Conf., Varna/Bulg. 1981, 189-193 (1983)., 1983.

    Google Scholar 

  15. I.I. Sharapudinov. On the basis property of the Haar system in the space \(\mathcal{L}^{p(t)}([0,1])\) and the principle of localization in the mean. Math. USSR, Sb., 58: 279–287, 1987.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Castillo, R., Rafeiro, H. (2016). Nonstandard Lebesgue Spaces. In: An Introductory Course in Lebesgue Spaces. CMS Books in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-30034-4_7

Download citation

Publish with us

Policies and ethics