Advertisement

Lorentz Spaces

  • René Erlín Castillo
  • Humberto Rafeiro
Chapter
Part of the CMS Books in Mathematics book series (CMSBM)

Abstract

The spaces considered in the previous chapters are one-parameter dependent. We now study the so-called Lorentz spaces which are a scale of function spaces which depend now on two parameters. Our first task therefore will be to define the Lorentz spaces and derive some of their properties, like completeness, separability, normability, duality among other topics, e.g., Hölder’s type inequality, Lorentz sequence spaces, and the spaces Lexp and LlogL, which were introduced by Zygmund and Titchmarsh.

Keywords

Triangle Inequality Maximal Function Type Inequality Lebesgue Space Equivalent Norm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [10]
    M. Cwikel. The dual of weak L p. Ann. Inst. Fourier, 25(2):81–126, 1975.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [11]
    M. Cwikel and C. Fefferman. Maximal seminorms on Weak L 1. Stud. Math., 69:149–154, 1980.MathSciNetzbMATHGoogle Scholar
  3. [12]
    M. Cwikel and C. Fefferman. The canonical seminorm on weak L 1. Stud. Math., 78:275–278, 1984.MathSciNetzbMATHGoogle Scholar
  4. [21]
    G.G. Gould. On a class of integration spaces. J. Lond. Math. Soc., 34: 161–172, 1959.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [22]
    L. Grafakos. Classical Fourier analysis, volume 249 of Graduate Texts in Mathematics. Springer, New York, third edition, 2014.Google Scholar
  6. [34]
    R.A. Hunt. On L(p,q) spaces. Enseign. Math. (2), 12:249–276, 1966.zbMATHGoogle Scholar
  7. [44]
    G.G. Lorentz. Some new functional spaces. Ann. Math. (2), 51:37–55, 1950.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [45]
    G.G. Lorentz. On the theory of spaces Λ. Pac. J. Math., 1:411–429, 1951.Google Scholar
  9. [47]
    W.A.J. Luxemburg and A.C. Zaanen. Some examples of normed Köthe spaces. Math. Ann., 162:337–350, 1966.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [78]
    E. C. Titchmarsh. On conjugate functions. Proc. Lond. Math. Soc. (2), 29:49–80, 1928.MathSciNetzbMATHGoogle Scholar
  11. [79]
    E. C. Titchmarsh. Additional note on conjugate functions. J. Lond. Math. Soc., 4:204–206, 1929.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [85]
    A. Zygmund. Sur les fonctions conjuguées. C. R. Acad. Sci., Paris, 187: 1025–1026, 1928.zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • René Erlín Castillo
    • 1
  • Humberto Rafeiro
    • 2
  1. 1.Universidad Nacional de ColombiaBogotáColombia
  2. 2.Pontificia Universidad JaverianaBogotáColombia

Personalised recommendations