Semantic Matching Strategies for Job Recruitment: A Comparison of New and Known Approaches

  • Gábor Rácz
  • Attila SaliEmail author
  • Klaus-Dieter Schewe
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9616)


A profile describes a set of skills a person may have or a set of skills required for a particular job. Profile matching aims to determine how well a given profile fits to a requested profile. The research reported in this paper starts from exact matching measure of [21]. It is extended then by matching filters in ontology hierarchies, since profiles naturally determine filters in the subsumption relation. Next we take into consideration similarities between different skills that are not related by the subsumption relation. Finally, a totally different approach, probabilistic matching based on the maximum entropy model is analyzed.


Semantic matching Ontology Lattice filters Probabilistic matching Maximum entropy model 


  1. 1.
    Baader, F., Nutt, W.: Basic description logic. In: Description Logic Handbook, pp. 43–95 (2003)Google Scholar
  2. 2.
    Bizer, C., Heese, R., Mochol, M., Oldakowski, R., Tolksdorf, R., Eckstein, R.: The impact of semantic web technologies on job recruitment processes. In: Proceedings of the 7th International Conference Wirtschaftsinformatik (2005)Google Scholar
  3. 3.
    Brickley, D., Ramanathan, V.G.: RDF Schema 1.1: W3C Recommendation 25, February 2014Google Scholar
  4. 4.
    Colucci, S., Di Noia, T., Di Sciascio, E., Donini, F., Mongiello, M.: Concept abduction and contraction in description logics. In: Proceedings of the 16th International Workshop on Description Logics (DL 2003). CEUR Workshop Proceedings, vol. 81 (2003)Google Scholar
  5. 5.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Di Noia, T., Di Sciascio, E., Donini, F.M.: Semantic matchmaking as non-monotonic reasoning: a description logic approach. J. Artif. Intell. Res. 29, 269–307 (2007)zbMATHGoogle Scholar
  7. 7.
    European Dictionary of Skills and Competences.
  8. 8.
    Hájek, P.: Mathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht (1998)zbMATHGoogle Scholar
  9. 9.
  10. 10.
    International Standard Classification of Occupations (2008)Google Scholar
  11. 11.
    Kern-Isberner, G., Lukasiewicz, T.: Combining probabilistic logic programming with the power of maximum entropy. Artif. Intell. 157(1), 139–202 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kießling, W.: Foundations of preferences in database systems. In: Proceedings of the 28th International Conference on Very Large Data Bases, pp. 311–322 (2002)Google Scholar
  13. 13.
    Lau, T., Sure, Y.: Introducing ontology-based skills management at a large insurance company. In: Proceedings of the Modellierung, pp. 123–134 (2002)Google Scholar
  14. 14.
    Levandowsky, M., Winter, D.: Distance between sets. Nature 234(5), 34–35 (1971)CrossRefGoogle Scholar
  15. 15.
    Liu, P., Dew, P.: Using semantic web technologies to improve expertise matching within academia. In: Proceedings of I-KNOW 2004, pp. 370–378 (2004)Google Scholar
  16. 16.
    Liu, L., Li, K.: Fuzzy filters of BL-algebras. Inf. Sci. 173(1), 141–154 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Lloyd, J.W.: Foundations of Logic Programming. Springer, Heidelberg (2012)zbMATHGoogle Scholar
  18. 18.
    Malinowski, E., Zimányi, E.: Hierarchies in a multidimensional model: from conceptual modeling to logical representation. Data Knowl. Eng. 59(2), 348–377 (2006)CrossRefGoogle Scholar
  19. 19.
    Motro, A.: VAGUE: a user interface to relational databases that permits vague queries. ACM Trans. Off. Inf. Syst. 6(3), 187–214 (1988)CrossRefGoogle Scholar
  20. 20.
    Pedrycz, W., Gomide, F.: An Introduction to Fuzzy Sets: Analysis and Design. MIT Press, Cambridge (1998)zbMATHGoogle Scholar
  21. 21.
    Popov, N., Jebelean, T.: Semantic Matching for Job Search Engines: A Logical Approach. Technical report 13–02, Research Institute for Symbolic Computation, JKU Linz (2013)Google Scholar
  22. 22.
    Ragone, A., Straccia, U., Di Noia, T., Di Sciascio, T., Donini, F.M.: Fuzzy matchmaking in e-marketplaces of peer entities using Datalog. Fuzzy Sets Syst. 160(2), 251–268 (2009)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Rödder, W., Meyer, C.-H.: Coherent knowledge processing at maximum entropy by SPIRIT. In: Proceedings of the 12th International Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers Inc. (1996)Google Scholar
  24. 24.
    Schramm, M., Ertel, W.: Reasoning with probabilities, maximum entropy: the system PIT and its application in LEXMED. In: Inderfurth, K., Schwödiauer, G., Domschke, W., Juhnke, F., Kleinschmidt, P., Wäscher, G. (eds.) Operations Research Proceedings, vol. 1999, pp. 274–280. Springer, Heidelberg (2000)Google Scholar
  25. 25.
    Schramm, M., Greiner, M.: Non-Monotonic Reasoning on Probability Models: Indifference, Independence. Inst. für Informatik (1995)Google Scholar
  26. 26.
    Veit, D., Müller, J., Schneider, M., Fiehn, B.: Matchmaking for autonomous agents in electronic marketplaces. In: Proceedings of the International Conference on Autonomous Agents 2001, pp. 65–66 (2001)Google Scholar
  27. 27.
    Wygralak, M.: Cardinalities of Fuzzy Sets. Springer, Heidelberg (2003)CrossRefzbMATHGoogle Scholar
  28. 28.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
  30. 30.
  31. 31.
  32. 32.

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Gábor Rácz
    • 1
  • Attila Sali
    • 1
    Email author
  • Klaus-Dieter Schewe
    • 2
  1. 1.Alfréd Rényi Institute of MathematicsHungarian Academy of SciencesBudapestHungary
  2. 2.Software Competence Center HagenbergHagenbergAustria

Personalised recommendations