Approximation and Dependence via Multiteam Semantics

  • Arnaud Durand
  • Miika Hannula
  • Juha KontinenEmail author
  • Arne Meier
  • Jonni Virtema
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9616)


We define a variant of team semantics called multiteam semantics based on multisets and study the properties of various logics in this framework. In particular, we define natural probabilistic versions of inclusion and independence atoms and certain approximation operators motivated by approximate dependence atoms of Väänänen.


Team Semantics Dependence Atoms Independence Atoms Weakly flat Context-specific Independence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The second and the third author were supported by grants 292767, 275241 and 264917 of the Academy of Finland. The fourth author is supported by the DFG grant ME 4279/1-1. The last author was supported by the Foundations’ Post Doc Pool via Jenny and Antti Wihuri Foundation. We also thank the anonymous referees for their helpful suggestions.


  1. 1.
    Böttcher, S., Link, S., Zhang, L.: Pulling conjunctive query equivalence out of the bag. In: Proceedings of 23rd ACM CIKM, pp. 41–50. ACM (2014)Google Scholar
  2. 2.
    Boutilier, C., Friedman, N., Goldszmidt, M., Koller, D.: Context-specific Independence in Bayesian Networks. In: Proceedings of 12th UAI, pp. 115–123. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1996)Google Scholar
  3. 3.
    Corander, J., Kontinen, J., Väänänen, J.: Logical approach to context-specific independence. (in preparation)Google Scholar
  4. 4.
    Dalen, D.: Logic and Structure, 4th edn. Springer, Heidelberg (2004)CrossRefzbMATHGoogle Scholar
  5. 5.
    Durand, A., Kontinen, J., de Rugy-Altherre, N., Väänänen, J.: Tractability frontier of data complexity in team semantics. In: Proceedings of 6th GandALF, EPTCS, vol. 193, pp. 73–85 (2015)Google Scholar
  6. 6.
    Durand, A., Kontinen, J., Vollmer, H.: Expressivity and complexity of dependence logic. In: Dependence Logic: Theory and Applications. Springer (2015, to appear)Google Scholar
  7. 7.
    Ebbing, J., Hella, L., Meier, A., Müller, J.-S., Virtema, J., Vollmer, H.: Extended modal dependence logic. In: Libkin, L., Kohlenbach, U., de Queiroz, R. (eds.) WoLLIC 2013. LNCS, vol. 8071, pp. 126–137. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Galliani, P.: Probabilistic dependence logic (2008), manuscriptGoogle Scholar
  9. 9.
    Galliani, P.: Inclusion and exclusion dependencies in team semantics - on some logics of imperfect information. Ann. Pure Appl. Logic 163(1), 68–84 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Galliani, P., Hella, L.: Inclusion logic and fixed point logic. In: Proceedings of CSL, pp. 281–295 (2013)Google Scholar
  11. 11.
    Galliani, P., Mann, A.L.: Lottery semantics: a compositional semantics for probabilistic first-order logic with imperfect information. Studia Logica 101(2), 293–322 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Garey, M.R., Johnson, D.S., Stockmeyer, L.J.: Some simplified np-complete graph problems. Theor. Comput. Sci. 1, 237–267 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Grädel, E., Väänänen, J.A.: Dependence and independence. Studia Logica 101(2), 399–410 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gyssens, M., Niepert, M., Gucht, D.V.: On the completeness of the semigraphoid axioms for deriving arbitrary from saturated conditional independence statements. Inf. Process. Lett. 114(11), 628–633 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hannula, M., Kontinen, J.: A finite axiomatization of conditional independence and inclusion dependencies. In: Beierle, C., Meghini, C. (eds.) FoIKS 2014. LNCS, vol. 8367, pp. 211–229. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  16. 16.
    Hannula, M., Kontinen, J., Link, S.: On independence atoms and keys. In: Proceedings of 23rd CIKM, pp. 1229–1238. ACM (2014)Google Scholar
  17. 17.
    Hannula, M., Kontinen, J., Virtema, J., Vollmer, H.: Complexity of propositional independence and inclusion logic. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9234, pp. 269–280. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  18. 18.
    Hintikka, J., Sandu, G.: Informational independence as a semantical phenomenon. Logic. Methodology and Philosophy of Science, vol. 8, pp. 571–589. Elsevier, Amsterdam (1989)Google Scholar
  19. 19.
    Hodges, W.: Compositional semantics for a language of imperfect information. Logic J. IGpPL 5(4), 539–563 (1997). (electronic)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Hyttinen, T., Paolini., G., Väänänen, J.: A logic for arguing about probabilities in measure teams. arXiv e-prints: 1509.01812 (2015)Google Scholar
  21. 21.
    Hyttinen, T., Paolini, G., Väänänen, J.: Quantum team logic and Bell’s inequalities. Rev. Symbolic Logic FirstView, 1–21 (2015).
  22. 22.
    Kivinen, J., Mannila, H.: Approximate inference of functional dependencies from relations. Theor. Comput. Sci. 149(1), 129–149 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Köhler, H., Link, S.: Armstrong axioms and Boyce-Codd-Heath normal form under bag semantics. Inf. Process. Lett. 110(16), 717–724 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kolaitis, P.G.: The query containment problem: set semantics vs. bag semantics. In: Proceedings of 7th AMW, CEUR Workshop Proceedings, vol. 1087 (2013)Google Scholar
  25. 25.
    Kontinen, J.: Coherence and computational complexity of quantifier-free dependence logic formulas. Studia Logica 101(2), 267–291 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Kontinen, J., Link, S., Väänänen, J.: Independence in database relations. In: Libkin, L., Kohlenbach, U., de Queiroz, R. (eds.) WoLLIC 2013. LNCS, vol. 8071, pp. 179–193. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  27. 27.
    Kontinen, J., Müller, J.S., Schnoor, H., Vollmer, H.: A Van Benthem theorem for modal team semantics. In: Proceedings of 24th CSL, LIPIcs, vol. 41, pp. 277–291. Schloss Dagstuhl-Leibniz-Zentrum Fuer Informatik, Dagstuhl, Germany (2015)Google Scholar
  28. 28.
    Krebs, A., Meier, A., Virtema, J.: A team based variant of CTL. In: Proceedings of TIME 2015 (2015)Google Scholar
  29. 29.
    Lamperti, G., Melchiori, M., Zanella, M.: On multisets in database systems. In: Proceedings of WMP, pp. 147–216. Springer, London, UK (2001)Google Scholar
  30. 30.
    Link, S.: Reasoning about saturated conditional independence under uncertainty: axioms, algorithms, and Levesque’s situations to the rescue. In: Proceedings of AAAI, AAAI Press (2013)Google Scholar
  31. 31.
    Link, S.: Sound approximate reasoning about saturated conditional probabilistic independence under controlled uncertainty. J. Appl. Logic 11(3), 309–327 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Link, S.: Frontiers for propositional reasoning about fragments of probabilistic conditional independence and hierarchical database decompositions. Theor. Comput. Sci. 603, 111–131 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Niepert, M., Gyssens, M., Sayrafi, B., Gucht, D.V.: On the conditional independence implication problem: a lattice-theoretic approach. Artif. Intell. 202, 29–51 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Boston (1994)zbMATHGoogle Scholar
  35. 35.
    Pensar, J., Nyman, H.J., Koski, T., Corander, J.: Labeled directed acyclic graphs: a generalization of context-specific independence in directed graphical models. Data Min. Knowl. Discov. 29(2), 503–533 (2015)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Väänänen, J.: Dependence Logic - A New Approach to Independence Friendly Logic, London Mathematical Society Student Texts, vol. 70. Cambridge University Press, Cambridge (2007)CrossRefzbMATHGoogle Scholar
  37. 37.
    Väänänen, J.: Modal dependence logic. In: Apt, K., van Rooij, R. (eds.) New Perspectives on Games and Interaction. Texts in Logic and Games, vol. 5, pp. 237–254. Amsterdam University Press, Amsterdam (2008)Google Scholar
  38. 38.
    Väänänen, J.: The logic of approximate dependence. arXiv:1408.4437 (2014)
  39. 39.
    Wong, S.K.M.: An extended relational data model for probabilistic reasoning. J. Intell. Inf. Syst. 9(2), 181–202 (1997)CrossRefGoogle Scholar
  40. 40.
    Wong, S.K.M., Butz, C.J., Wu, D.: On the implication problem for probabilistic conditional independency. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 30(6), 785–805 (2000)CrossRefGoogle Scholar
  41. 41.
    Yang, F.: On extensions and variants of dependence logic - a study of intuitionistic connectives in the team semantics setting. Ph.D thesis, Department of Mathematics and Statistics, University of Helsinki (2014)Google Scholar
  42. 42.
    Yang, F., Väänänen, J.: Propositional logics of dependence and independence, Part I. CoRR abs/1412.7998 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Arnaud Durand
    • 1
  • Miika Hannula
    • 2
  • Juha Kontinen
    • 2
    Email author
  • Arne Meier
    • 3
  • Jonni Virtema
    • 3
  1. 1.Institut de Mathématiques de Jussieu - Paris Rive Gauche, CNRS UMR 7586Université Paris DiderotParisFrance
  2. 2.Department of Mathematics and StatisticsUniversity of HelsinkiHelsinkiFinland
  3. 3.Leibniz Universität Hannover, Institut für Theoretische InformatikHanoverGermany

Personalised recommendations