Maintenance of Queries Under Database Changes: A Unified Logic Based Approach

  • Elena V. RavveEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9616)


This contribution deals with one single theme, the exploitation of logical reduction techniques in database theory. Two kinds of changes may be applied to databases: structural changes, known also as restructuring or schema evolution, and data changes. We present both of them in the terms of syntactically defined translation schemes.

At the same time, we have application programs, computing different queries on the database, which are oriented on some specific generation of the database. Systematically using the technique of translation scheme, we introduce the notion of \(\Phi \)-sums and show how queries, expressible in extensions of First Order Logic (FOL) may be handled over different generations of the \(\Phi \)-sums. Moreover, using the technique of translation scheme, we introduce the notions of an incremental view recomputations. We prove when queries expressible in extensions of FOL allow incremental view recomputations.

Our approach covers uniformly the cases we have encountered in the literature and can be applied to all existing query languages.


Database Changes Translation Scheme Database Theory View Recomputation Incremental Evaluation System (IES) 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Boston (1995)zbMATHGoogle Scholar
  2. 2.
    Benedikt, M., Koch, C.: From XQuery to relational logics. ACM Trans. Database Syst. 34(4), 25:1–25:48 (2009)CrossRefGoogle Scholar
  3. 3.
    Buneman, P., Khanna, S., Tan, W.-C.: On propagation of deletions and annotations through views. In: Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, Madison, WI, 3–6 June 2002, pp. 150–158 (2002)Google Scholar
  4. 4.
    Bosse, U.: Ehrenfeucht-Fraïssé Games for Fixed Point Logic. Ph.D. thesis. Department of Mathematics, University of Freiburg, Germany (1995)Google Scholar
  5. 5.
    Bancilhon, F., Spyratos, N.: Update semantics of relational views. ACM Trans. Database Syst. 6(4), 557–575 (1981)CrossRefzbMATHGoogle Scholar
  6. 6.
    Chang, C.C., Keisler, H.J.: Model Theory. Studies in Logic, 3rd edn. vol. 73. North-Holland, Amsterdam (1990)Google Scholar
  7. 7.
    Codd, E.F.: A relational model of large shared data banks. Commun. ACM 13(2), 377–387 (1970)CrossRefzbMATHGoogle Scholar
  8. 8.
    Dawar, A., Hellat, L.: The expressive power of finitely many genaralized quantifiers. Technical report CSR 24–93. Computer Science Department, University of Wales, University College of Swansea, UK (1993)Google Scholar
  9. 9.
    Dong, G., Libkin, L., Wong, L.: Incremental recomputation in local languages. Inf. Comput. 181(2), 88–98 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dong, G., Su, J.: Deterministic FOIES are strictly weaker. Ann. Math. Artif. Intell. 19(1–2), 127–146 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dong, G., Su, J.: Arity bounds in first-order incremental evaluation and definition of polynomial time database queries. J. Comput. Syst. Sci. 57(3), 289–308 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dong, G., Topor, R.: Incremental evaluation of Datalog queries. In: Hull, R., Biskup, J. (eds.) ICDT 1992. LNCS, vol. 646, pp. 282–296. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  13. 13.
    Dong, G., Zhang, L.: Separating auxiliary arity hierarchy of first-order incremental evaluation systems using (\(3k+1\))-ary input relations. Int. J. Found. Comput. Sci. 11(4), 573–578 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ebbinghaus, H.D., Flum, J.: Finite Model Theory. Perspectives in Mathematical Logic. Springer, Berlin (1995)zbMATHGoogle Scholar
  15. 15.
    Ebbinghaus, H.D., Flum, J., Thomas, W.: Mathematical Logic. Undergraduate Texts in Mathematics, 2nd edn. Springer, New York (1994)CrossRefzbMATHGoogle Scholar
  16. 16.
    Franconi, E., Guagliardo, P.: On the translatability of view updates. In: Freire, J., Suciu, D. (eds.) AMW. CEUR Workshop Proceedings, vol. 866, pp. 154–167 (2012)Google Scholar
  17. 17.
    Franconi, E., Guagliardo, P.: The view update problem revisited. CoRR abs/1211.3016 (2012)Google Scholar
  18. 18.
    Franconi, E., Guagliardo, P.: Effectively updatable conjunctive views. In: Proceedings of the 7th Alberto Mendelzon International Workshop on Foundations of Data Management, Puebla/Cholula, Mexico, 21–23 May 2013Google Scholar
  19. 19.
    Feferman, S., Vaught, R.: The first order properties of products of algebraic systems. Fundam. Math. 47, 57–103 (1959)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Guagliardo, P., Pichler, R., Sallinger, E.: Enhancing the updatability of projective views. In: Proceedings of the 7th Alberto Mendelzon International Workshop on Foundations of Data Management, Puebla/Cholula, Mexico, 21–23 May 2013Google Scholar
  21. 21.
    Grädel, E., Siebertz, S.: Dynamic definability. In: Proceedings 15th International Conference on Database Theory ICDT, Berlin, Germany, 26–29 March 2012, pp. 236–248 (2012)Google Scholar
  22. 22.
    Gurevich, Y.: Modest theory of short chains, I. J. Symbolic Logic 44, 481–490 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Guagliardo, P., Wieczorek, P.: Query processing in data integration. In: Kolaitis, P.G., Lenzerini, M., Schweikardt, N. (eds.) Data Exchange, Information, and Streams. Dagstuhl Follow-Ups, vol. 5, pp. 129–160. Schloss Dagstuhl, Leibniz-Zentrum für Informatik (2013)Google Scholar
  24. 24.
    Hegner, S.J.: The relative complexity of updates for a class of database views. In: Seipel, D., Turull-Torres, J.M. (eds.) FoIKS 2004. LNCS, vol. 2942, pp. 155–175. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  25. 25.
    Immerman, N.: Descriptive Complexity. Graduate Texts in Computer Science. Springer, New York (1999)CrossRefzbMATHGoogle Scholar
  26. 26.
    Koch, C.: Incremental query evaluation in a ring of databases. In: Proceedings of the 29th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, Indianapolis, IN, 6–11 June 2010, pp. 87–98 (2010)Google Scholar
  27. 27.
    Makowsky, J.A., Ravve, E.V.: BCNF via attribute splitting. In: Düsterhöft, A., Klettke, M., Schewe, K.-D. (eds.) Conceptual Modelling and Its Theoretical Foundations. LNCS, vol. 7260, pp. 73–84. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  28. 28.
    Quan, X., Wiederhold, G.: Incremental recomputation of active relational expressions. IEEE Trans. Knowl. Data Eng. 3(3), 337–341 (1991)CrossRefGoogle Scholar
  29. 29.
    Rabin, M.O.: A simple method for undecidability proofs and some applications. In: Bar Hillel, Y. (ed.) Logic, Methodology and Philosophy of Science II. Studies in Logic, pp. 58–68. North Holland, (1965)Google Scholar
  30. 30.
    Ravve, E.V., Volkovich, Z., Weber, G.-W.: A uniform approach to incremental reasoning on strongly distributed systems. In: Proceedings of GCAI2015 (2015, to appear)Google Scholar
  31. 31.
    Weber, V., Schwentick, T.: Dynamic complexity theory revisited. In: Proceedings 22nd Annual Symposium on Theoretical Aspects of Computer Science, Stuttgart, Germany, 24–26 February 2005, pp. 256–268 (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Ort Braude CollegeKarmielIsrael

Personalised recommendations