Skip to main content

Basics: Theory

  • Chapter
  • First Online:
  • 2029 Accesses

Abstract

Electrophysiology deals with the analysis of electrical properties and signals that can be studied in biological preparations. In the chapter on Basics: Theory, we presented some theoretical background that is essential for describing electrical phenomena at the cell membrane. In this chapter on Basics: Methods, we want to talk about Basic: Methods that will allow us to gain an understanding of the electrophysiological phenomena. When we discussed the GHK equation for the potential, we briefly mentioned how in excitable cells (nerve and muscle cells) the action potential is governed by changes in permeability ratios. In other cells the membrane potential is also determined by voltage- and time-dependent permeabilities, and these mechanisms essentially determine the function of a cell. Modifications in their properties often indicate dysfunction involved in diseases, or they have a physiologically regulatory function.

For analysis of permeability changes at a cell membrane, different techniques are available to the scientist. We shall now introduce and classify techniques by starting with methods that can be used in a living animal (for predominately medical-diagnostical (e. g. electrocardiogram (ECG)) or therapeutical (e. g. electroshock) purposes) going down to methods that allow investigation of the function of single membrane proteins, which are nowadays used extensively in elucidating structure–function relationships as well as protein dysfunction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allen TGJ (1997) The `sniffer-patch’ technique for detection of neurotransmitter release. Trends Neurosci 20:192–197

    Article  CAS  PubMed  Google Scholar 

  • Axon Instruments (1993) The Axon Guide for Electrophysiology and Biophysics. Axon Instruments Inc, California

    Google Scholar 

  • Boven K-H, Fejtl M, Moller A, Nisch W, Stett A (2006) On Micro-Electrode Array Revival. In: Baudry M, Taketani M (eds) Advances in Network Electrophysiology Using Multi-Electrode Arrays. Springer Press, New York

    Google Scholar 

  • Chen G, Ewing AG (1997) Chemical analysis of single cells and exocytosis. Crit Rev Neurobio 11:59–90

    Article  Google Scholar 

  • Cole KS (1949) Dynamic electrical characteristics of the squid axon membrane. Arch Sci Physiol 3:253–258

    CAS  Google Scholar 

  • Dugast C, Suaud-Chagny MF, Gonon F (1994) Continuous in vivo monitoring of evoked dopamine release in the rat nucleus accumbens by amperometry. Neuroscience 62:647–654

    Article  CAS  PubMed  Google Scholar 

  • Einthoven W (1925) The string galvanometer and the measurement of the action currents of the heart. Nobel Lectures, Physiology or Medicine 1922–1941, Elsevier Pub.Comp., Amsterdam, 1965

    Google Scholar 

  • Fromherz P, Offenhäusser A, Vetter T, Weis J (1991) A neuron-silicon junction: a Retzius cell of the leech on an insulated-gate field-effect transistor. Science 252:1290–1293

    Article  CAS  PubMed  Google Scholar 

  • Fuhrmann GF, Schwarz W, Kersten R, Sdun H (1985) Effects of vanadate, menadione, and menadione analogs on the Ca2+-activated K+ channels in human red blood cells: Possible relations to membrane-bound oxidoreductase activity. Biochim Biophys Acta 820:223–234

    Article  CAS  PubMed  Google Scholar 

  • Gilmartin MA, Hart JP (1995) Sensing with chemically and biologically modified carbon electrodes. A review. Analyst 120:1029–1045

    Article  CAS  PubMed  Google Scholar 

  • Gomez JF, Brioso MA, Machado JD, Sanchez JL, Borges R (2002) New approaches for analysis of amperometrical recordings. Ann N Y Acad Sci 971:647–654

    Article  CAS  PubMed  Google Scholar 

  • Hille B (1970) Ionic channels in nerve membranes. Progr Biophys Mol Biol 21:1–32

    Article  CAS  Google Scholar 

  • Hille B (1992) Ionic Channels of Excitable Membranes, 2nd edn. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Hodgkin AL, Huxley AF, Katz B (1952) Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J Physiol Lond 116:424–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katz AM (1977) Physiology of the Heart. Raven Press, New York

    Google Scholar 

  • Kostuk PG, Krishtal OA (1984) Methods in the Neurosciences. Intracellular perfusion of excitable cells. IBRO handbook series, vol. 5. Wiley, Chichester

    Google Scholar 

  • Kawagoe KT, Zimmerman JB, Wightman RM (1993) Principles of voltammetry and microelectrode surface states. J Neurosci Methods 48:225–240

    Article  CAS  PubMed  Google Scholar 

  • Ling G, Gerard RW (1949) The normal membrane potential of frog sartorius fiber. J Cell Comp Physiol 34:383–396

    Article  CAS  Google Scholar 

  • Lüke HD (1999) The origins of the sampling theorem. IEEE CommunicMag 37:106–108

    Article  Google Scholar 

  • Muller-Chretien E (2014) Outside-out ″Sniffer-Patch″ clamp technique for in situ measures of neurotransmitter release. In: Martina M, Taverna S (eds) Patch-Clamp Methods and Protocols. Springer, New York, pp 195–204

    Google Scholar 

  • Neher E (1991) Ion channels for communication between and within cells. Nobel Lectures, Physiology or Medicine:1991–1995, Ed. N. Ringertz, World Scientific Pub. Co, Singapore, 1997

    Google Scholar 

  • Nonner W (1969) A new voltage clamp method for Ranvier nodes. Pflügers Arch 309:176–192

    Article  CAS  PubMed  Google Scholar 

  • Rettinger J, Schwarz W (1994) Ion-selective channels in K562 cells: A patch-clamp analysis. J Basic Clinic Physiol Pharmacol 5:1–18

    Google Scholar 

  • Rettinger J, Vasilets LA, Elsner S, Schwarz W (1994) Analysing the Na+/K+-pump in outside-out giant membrane patches of Xenopus oocytes. In: Bamberg E, Schoner W (eds) The Sodium Pump. Steinkopff Verlag, Darmstadt, pp 553–556

    Chapter  Google Scholar 

  • Sakmann, B. (1991). Elementary steps in synaptic transmission revealed by currents through single ion channels. Nobel Lectures, Physiology or Medicine 1991–1995, Ed. N. Ringertz, World Scientific Pub. Co, Singapore, 1997

    Google Scholar 

  • Sakmann B, Neher E (1995) Single-Channel Recording, 2nd edn. Plenum Press, New York

    Book  Google Scholar 

  • Schwarz W (1983) Sodium and potassium channels in myelinated nerve fibers. Experientia 39:935–941

    Article  CAS  PubMed  Google Scholar 

  • Schwarz W, Grygorczyk R, Hof D (1989) Recording single-channel currents from human red-cells. Methods in Enzymology 173:112–121

    Article  CAS  PubMed  Google Scholar 

  • Sigworth FJ, Sine SM (1987) Data transformations for improved display and fitting of single- channel dwell time histograms. Biophys J 52:1047–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spira ME, Hai A (2013) Multi-electrode array technologies for neuroscience and cardiology. Nature Nanotech 8:83–94

    Article  CAS  Google Scholar 

  • Stämpfli R (1954) A new method for measuring membrane potentials with external electrodes. Experientia 10:508–509

    Article  PubMed  Google Scholar 

  • Stett A, Egert U, Guenther E, Hofmann F, Meyer T, Nisch W, Haemmerle H (2003) Biological application of microelectrode arrays in drug discovery and basic research. Anal Bioanal Chem 377:486–495

    Article  CAS  PubMed  Google Scholar 

  • Stutzki H, Leibig C, Andreadaki A, Fischer D, Zeck G (2014) Inflammatory stimulation preserves physiological properties of retinal ganglion cells after optic nerve injury. Front Cell Neurosci 8:38

    Article  PubMed  PubMed Central  Google Scholar 

  • Taglialatela M, Toro L, Stefani E (1992) Novel voltage clamp to record small, fast currents from ion channels expressed in Xenopus oocytes. Biophys J 61:78–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor RE (1963) Cable Theory. In: Nastuk WL (ed) Physical Techniques in Biological Research. Academic Press, New York, pp 219–262

    Google Scholar 

  • Thomas RC (1978) Ion-selective intracellular microelectrodes. How to make and use then. Academic Press, New York

    Google Scholar 

  • Ussing HH, Zerahn K (1951) Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol Scand 23:110–127

    Article  CAS  PubMed  Google Scholar 

  • Wightman RM, Zimmerman JB (1990) Control of dopamine extracellular concentration in rat striatum by impulse flow and uptake. Brain Res Brain Res Rev 15:135–144

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Rettinger .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rettinger, J., Schwarz, S., Schwarz, W. (2016). Basics: Theory. In: Electrophysiology . Springer, Cham. https://doi.org/10.1007/978-3-319-30012-2_3

Download citation

Publish with us

Policies and ethics