Skip to main content

Hankel Matrices for Weighted Visibly Pushdown Automata

  • Conference paper
  • First Online:
Language and Automata Theory and Applications (LATA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9618))

Included in the following conference series:

  • 1431 Accesses

Abstract

Hankel matrices (aka connection matrices) of word functions and graph parameters have wide applications in automata theory, graph theory, and machine learning. We give a characterization of real-valued functions on nested words recognized by weighted visibly pushdown automata in terms of Hankel matrices on nested words. This complements C. Mathissen’s characterization in terms of weighted monadic second order logic.

Nadia Labai—Supported by the National Research Network RiSE (S114), and the LogiCS doctoral program (W1255) funded by the Austrian Science Fund (FWF).

Johann A. Makowsky—Partially supported by a grant of Technion Research Authority.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This formalism was originally introduced in [18] for graph parameters.

  2. 2.

    The original definition of nested words allowed “dangling” edges. We will only be concerned with nested words that are well-matched.

References

  1. Allauzen, C., Mohri, M., Riley, M.: Statistical modeling for unit selection in speech synthesis. In: Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, pp. 55. Association for Computational Linguistics (2004)

    Google Scholar 

  2. Alur, R., Madhusudan, P.: Adding nesting structure to words. In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 1–13. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Alur, R., Arenas, M., Barceló, P., Etessami, K., Immerman, N., Libkin, L.: First-order and temporal logics for nested words. In: 22nd Annual IEEE Symposium on Logic in Computer Science, 2007, LICS 2007, pp. 151–160. IEEE (2007)

    Google Scholar 

  4. Angluin, D.: On the complexity of minimum inference of regular sets. Inf. Control 39(3), 337–350 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  5. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arnold, A., Plaice, J.: Finite Transition Systems: Semantics of Communicating Systems. Prentice Hall International (UK) Ltd., Hert- fordshire (1994)

    MATH  Google Scholar 

  7. Balle, B., Mohri, M.: Spectral learning of general weighted automata via constrained matrix completion. In: Advances in neural information processing systems, pp. 2168–2176 (2012)

    Google Scholar 

  8. Balle, B., Mohri, M.: Learning weighted automata. In: Maletti, A. (ed.) Algebraic Informatics. LNCS, vol. 9270, pp. 1–21. Springer, New York (2015)

    Chapter  Google Scholar 

  9. Beimel, A., Bergadano, F., Bshouty, N., Kushilevitz, E., Varricchio, S.: Learning functions represented as multiplicity automata. J. ACM (JACM) 47(3), 506–530 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bergadano, F., Varricchio, S.: Learning behaviors of automata from multiplicity and equivalence queries. SIAM J. Comput. 25(6), 1268–1280 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bisht, L., Bshouty, N.H., Mazzawi, H.: On optimal learning algorithms for multiplicity automata. In: Lugosi, G., Simon, H.U. (eds.) COLT 2006. LNCS (LNAI), vol. 4005, pp. 184–198. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Carlyle, J., Paz, A.: Realizations by stochastic finite automata. J. Comput. Syst. Sci. 5, 26–40 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chatterjee, K., Doyen, L., Henzinger, T.A.: Probabilistic weighted automata. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 244–258. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Chatterjee, K., Henzinger, T.A., Jobstmann, B., Singh, R.: Measuring and synthesizing systems in probabilistic environments. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 380–395. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Cobham, A.: Representation of a word function as the sum of two functions. Math. Syst. Theory 11, 373–377 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  16. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic: A Language-Theoretic Approach, vol. 138. Cambridge University Press, New York (2012)

    Book  Google Scholar 

  17. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique width. In: Hromkovič, J., Sýkora, O. (eds.) WG 1998. LNCS, vol. 1517, pp. 1–16. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  18. Courcelle, B., Makowsky, J., Rotics, U.: On the fixed parameter complexity of graph enumeration problems definable in monadic second order logic. Discrete Appl. Math. 108(1–2), 23–52 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Culik II, K., Kari, J.: Image compression using weighted finite automata. In: Borzyszkowski, A.M., Sokolowski, S. (eds.) MFCS 1993. LNCS, vol. 711, pp. 392–402. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  20. D’Antoni, L., Alur, R.: Symbolic visibly pushdown automata. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 209–225. Springer, Heidelberg (2014)

    Google Scholar 

  21. De Schutter, B., De Moor, B.: The singular-value decomposition in the extended max algebra. Linear Algebra Appl. 250, 143–176 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. De Schutter, B., De Moor, B.: The qr decomposition and the singular value decomposition in the symmetrized max-plus algebra revisited. SIAM Rev. 44(3), 417–454 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Downey, R., Fellows, M.: Parametrized Complexity. Springer, New York (1999)

    Book  Google Scholar 

  24. Driscoll, E., Burton, A., Reps, T.: Checking compatibility of a producer and a consumer. Citeseer (2011)

    Google Scholar 

  25. Driscoll, E., Thakur, A., Reps, T.: OpenNWA: a nested-word automaton library. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 665–671. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  26. Droste, M., Gastin, P.: Weighted automata and weighted logics. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 513–525. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  27. Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata. Springer Science & Business Media, Heidelberg (2009)

    Book  MATH  Google Scholar 

  28. Fernando, C., Pereira, N., Riley, M.: Speech recognition by composition of weighted finite automata. In: Roche, E., Schabes, Y. (eds.) Finite-State Language Processing. MIT Press, Cambridge (1997)

    Google Scholar 

  29. Fliess, M.: Matrices de hankel. J. Math. Pures Appl. 53(9), 197–222 (1974)

    MathSciNet  MATH  Google Scholar 

  30. Freedman, M., Lovász, L., Schrijver, A.: Reflection positivity, rank connectivity, and homomorphism of graphs. J. Am. Math. Soc. 20(1), 37–51 (2007)

    Article  MATH  Google Scholar 

  31. Gauwin, O., Niehren, J.: Streamable fragments of forward Xpath. In: Bouchou-Markhoff, B., Caron, P., Champarnaud, J.-M., Maurel, D. (eds.) CIAA 2011. LNCS, vol. 6807, pp. 3–15. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  32. Gentle, J.: Computational Statistics, vol. 308. Springer, New York (2009)

    Book  MATH  Google Scholar 

  33. Godlin, B., Kotek, T., Makowsky, J.A.: Evaluations of Graph Polynomials. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG 2008. LNCS, vol. 5344, pp. 183–194. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  34. Gold, E.: Complexity of automaton identification from given data. Inf. Control 37(3), 302–320 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  35. Golub, G., Van Loan, C.: Matrix Computations, vol. 3. JHU Press, Baltimore (2012)

    Google Scholar 

  36. Habrard, A., Oncina, J.: Learning multiplicity tree automata. In: Sakakibara, Y., Kobayashi, S., Sato, K., Nishino, T., Tomita, E. (eds.) ICGI 2006. LNCS (LNAI), vol. 4201, pp. 268–280. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  37. Harris, W.R., Jha, S., Reps, T.: Secure programming via visibly pushdown safety games. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 581–598. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  38. Haussler, D., Littlestone, N., Warmuth, M.: Predicting \(\{\)0, 1\(\}\)-functions on randomly drawn points. In: 29th Annual Symposium on Foundations of Computer Science, 1988, pp. 100–109. IEEE (1988)

    Google Scholar 

  39. Heller, A.: Probabilistic automata and stochastic transformations. Theory Comput. Syst. 1(3), 197–208 (1967)

    MathSciNet  MATH  Google Scholar 

  40. Hsu, D., Kakade, S., Zhang, T.: A spectral algorithm for learning hidden markov models. J. Comput. Syst. Sci. 78(5), 1460–1480 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kiefer, S., Murawski, A.S., Ouaknine, J., Wachter, B., Worrell, J.: On the complexity of equivalence and minimisation for Q-weighted automata. Log. Meth. Comput. Sci. (LMCS) 9(1:8), 1–22 (2013)

    MathSciNet  Google Scholar 

  42. Klema, V., Laub, A.: The singular value decomposition: its computation and some applications. IEEE Trans. Autom. Control 25(2), 164–176 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  43. Labai, N.: Definability and Hankel Matrices. Master’s thesis, Technion - Israel Institute of Technology, Faculty of Computer Science (2015)

    Google Scholar 

  44. Labai, N., Makowsky, J.: Weighted automata and monadic second order logic. In: EPTCS Proceedings of GandALF, vol. 119, pp. 122–135 (2013)

    Google Scholar 

  45. Labai, N., Makowsky, J.: Tropical graph parameters. In: DMTCS Proceedings of FPSAC, vol. 01, pp. 357–368 (2014)

    Google Scholar 

  46. Labai, N., Makowsky, J.: Meta-theorems using hankel matrices (2015)

    Google Scholar 

  47. Littlestone, N.: Learning quickly when irrelevant attributes abound: a new linear-threshold algorithm. Mach. Learn. 2(4), 285–318 (1988)

    Google Scholar 

  48. Lovász, L.: Connection matrices. Oxford Lect. Ser. Math. Appl. 34, 179 (2007)

    Google Scholar 

  49. Lovász, L.: Large Networks and Graph Limits, vol. 60. Colloquium Publications, New York (2012)

    MATH  Google Scholar 

  50. Makowsky, J.: Algorithmic uses of the Feferman-Vaught theorem. Ann. Pure Appl. Logic 126(1–3), 159–213 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  51. Mathissen, C.: Weighted logics for nested words and algebraic formal power series. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 221–232. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  52. McMillan, K.: Symbolic Model Checking. Springer, New York (1993)

    Book  MATH  Google Scholar 

  53. Mohri, M.: Finite-state transducers in language and speech processing. Comput. Linguist. 23(2), 269–311 (1997)

    MathSciNet  Google Scholar 

  54. Mozafari, B., Zeng, K., Zaniolo, C.: High-performance complex event processing over xml streams. In: Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data, pp. 253–264. ACM (2012)

    Google Scholar 

  55. Murawski, A.S., Walukiewicz, I.: Third-order idealized algol with iteration is decidable. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 202–218. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  56. Pitt, L., Warmuth, M.: The minimum consistent dfa problem cannot be approximated within any polynomial. J. ACM (JACM) 40(1), 95–142 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  57. Poularikas, A.: Transforms and Applications Handbook. CRC Press, London (2010)

    Book  MATH  Google Scholar 

  58. Valiant, L.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

We thank Boaz Blankrot for helpful discussions on matrix decompositions and the anonymous referees for valuable feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Labai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Labai, N., Makowsky, J.A. (2016). Hankel Matrices for Weighted Visibly Pushdown Automata. In: Dediu, AH., Janoušek, J., Martín-Vide, C., Truthe, B. (eds) Language and Automata Theory and Applications. LATA 2016. Lecture Notes in Computer Science(), vol 9618. Springer, Cham. https://doi.org/10.1007/978-3-319-30000-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30000-9_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29999-0

  • Online ISBN: 978-3-319-30000-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics