Assessing Basin Identification Methods for Locating Multiple Optima

  • Simon WessingEmail author
  • Günter Rudolph
  • Mike Preuss
Part of the Springer Optimization and Its Applications book series (SOIA, volume 107)


Basin identification is an important ingredient in global optimization algorithms for the efficient use of local searches. An established approach for this task is obtaining topographical information about the objective function from a discrete sample of the search space and representing it in a graph structure. So far, different variants of this approach are usually assessed by evaluating the performance of a whole optimization algorithm using them as components. In this work, we compare two approaches on their own, namely topographical selection and nearest-better clustering, regarding their ability to identify the distinct attraction basins of multimodal functions. We show that both have different strengths and weaknesses, as their behavior is very dependent on the problem instance.


Basin identification Multi-local optimization Topographical selection Nearest-better clustering Sampling 


  1. 1.
    Addis, B., Locatelli, M., Schoen, F.: Disk packing in a square: a new global optimization approach. INFORMS J. Comput. 20 (4), 516–524 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Addis, B., Cassioli, A., Locatelli, M., Schoen, F.: A global optimization method for the design of space trajectories. Comput. Optim. Appl. 48 (3), 635–652 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Aggarwal, C.C., Hinneburg, A., Keim, D.A.: On the surprising behavior of distance metrics in high dimensional space. In: Van den Bussche, J., Vianu, V. (eds.) Database Theory — ICDT. Lecture Notes in Computer Science, vol. 1973, pp. 420–434. Springer, Berlin, Heidelberg (2001)Google Scholar
  4. 4.
    Ali, M.M., Storey, C.: Topographical multilevel single linkage. J. Global Optim. 5 (4), 349–358 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Beasley, D., Bull, D.R., Martin, R.R.: A sequential niche technique for multimodal function optimization. Evol. Comput. 1 (2), 101–125 (1993)CrossRefGoogle Scholar
  6. 6.
    Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is “nearest neighbor” meaningful? In: Beeri, C., Buneman, P. (eds.) Database Theory — ICDT’99. Lecture Notes in Computer Science, vol. 1540, pp. 217–235. Springer, Berlin, Heidelberg (1999)Google Scholar
  7. 7.
    Das, S., Maity, S., Qu, B.Y., Suganthan, P.N.: Real-parameter evolutionary multimodal optimization – a survey of the state-of-the-art. Swarm and Evol. Comput. 1 (2), 71–88 (2011)CrossRefGoogle Scholar
  8. 8.
    De Rainville, F.M., Gagné, C., Teytaud, O., Laurendeau, D.: Evolutionary optimization of low-discrepancy sequences. ACM Trans. Model. Comput. Simul. 22 (2), 9:1–9:25 (2012)Google Scholar
  9. 9.
    Goldberg, D.E., Richardson, J.: Genetic algorithms with sharing for multimodal function optimization. In: Proceedings of the Second International Conference on Genetic Algorithms and Their Application, pp. 41–49. Lawrence Erlbaum Associates, Inc., London (1987)Google Scholar
  10. 10.
    Illian, J., Penttinen, A., Stoyan, H., Stoyan, D.: Statistical Analysis and Modelling of Spatial Point Patterns. Wiley, New York (2008)zbMATHGoogle Scholar
  11. 11.
    Johnson, M.E., Moore, L.M., Ylvisaker, D.: Minimax and maximin distance designs. J. Stat. Plan. Infer. 26 (2), 131–148 (1990)MathSciNetCrossRefGoogle Scholar
  12. 12.
    León, T., Sanmatías, S., Vercher, E.: A multi-local optimization algorithm. Top 6 (1), 1–18 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    López Redondo, J., Martínez Ortigosa, P., Žilinskas, J.: Multimodal evolutionary algorithm for multidimensional scaling with city-block distances. Informatica 23 (4), 601–620 (2012)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)CrossRefzbMATHGoogle Scholar
  15. 15.
    Parmee, I.C.: The maintenance of search diversity for effective design space decomposition using cluster-oriented genetic algorithms (COGA) and multi-agent strategies (GAANT). In: Proceedings of 2nd International Conference on Adaptive Computing in Engineering Design and Control, ACEDC ’96, pp. 128–138. University of Plymouth, Plymouth (1996)Google Scholar
  16. 16.
    Preuss, M.: Multimodal Optimization by Means of Evolutionary Algorithms. Springer, Berlin (2015)CrossRefzbMATHGoogle Scholar
  17. 17.
    Preuss, M., Naujoks, B., Rudolph, G.: Pareto set and EMOA behavior for simple multimodal multiobjective functions. In: Runarsson, T., Beyer, H.G., Burke, E., Merelo-Guervós, J., Whitley, L., Yao, X. (eds.) Parallel Problem Solving from Nature - PPSN IX. Lecture Notes in Computer Science, vol. 4193, pp. 513–522. Springer, Berlin (2006)CrossRefGoogle Scholar
  18. 18.
    Price, C.J.: Non-linear semi-infinite programming. Ph.D. thesis, University of Canterbury, Department of Mathematics, Christchurch, New Zealand (1992)Google Scholar
  19. 19.
    Pronzato, L., Müller, W.G.: Design of computer experiments: space filling and beyond. Stat. Comput. 22 (3), 681–701 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer experiments. Stat. Sci. 4 (4), 409–423 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Thomsen, R.: Multimodal optimization using crowding-based differential evolution. In: IEEE Congress on Evolutionary Computation, vol. 2, pp. 1382–1389 (2004)Google Scholar
  22. 22.
    Törn, A., Viitanen, S.: Topographical global optimization. In: Floudas, C.A., Pardalos, P.M. (eds.) Recent Advances in Global Optimization. Princeton Series in Computer Sciences, pp. 384–398. Princeton University Press, Princeton (1992)Google Scholar
  23. 23.
    Törn, A., Viitanen, S.: Topographical global optimization using pre-sampled points. J. Global Optim. 5 (3), 267–276 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Törn, A., Viitanen, S.: Iterative topographical global optimization. In: Floudas, C., Pardalos, P. (eds.) State of the Art in Global Optimization. Nonconvex Optimization and Its Applications, vol. 7, pp. 353–363. Springer, Berlin (1996)CrossRefGoogle Scholar
  25. 25.
    Törn, A., Žilinskas, A.: Global Optimization. Lecture Notes in Computer Science, vol. 350. Springer, Berlin (1989)Google Scholar
  26. 26.
    Törn, A., Ali, M.M., Viitanen, S.: Stochastic global optimization: problem classes and solution techniques. J. Global Optim. 14 (4), 437–447 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Wessing, S.: The multiple peaks model 2. Algorithm Engineering Report TR15-2-001, Technische Universität Dortmund (2015).
  28. 28.
    Wessing, S.: Two-stage methods for multimodal optimization. Ph.D. thesis, Technische Universität Dortmund (2015).
  29. 29.
    Žilinskas, A.: On statistical models for multimodal optimization. Mathematische Operationsforschung und Statistik. Series Statistics 9, 255–266 (1978)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceTechnische Universität DortmundDortmundGermany
  2. 2.European Research Center for Information Systems (ERCIS)MünsterGermany

Personalised recommendations