Skip to main content

A Multicriteria Generalization of Bayesian Global Optimization

  • Chapter
  • First Online:
Book cover Advances in Stochastic and Deterministic Global Optimization

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 107))

Abstract

This chapter discusses a generalization of the expected improvement used in Bayesian global optimization to the multicriteria optimization domain, where the goal is to find an approximation to the Pareto front. The expected hypervolume improvement (EHVI) measures improvement as the gain in dominated hypervolume relative to a given approximation to the Pareto front. We will review known properties of the EHVI, applications in practice and propose a new exact algorithm for computing EHVI. The new algorithm has asymptotically optimal time complexity O(nlogn). This improves existing computation schemes by a factor of n∕logn. It shows that this measure, at least for a small number of objective functions, is as fast as other simpler measures of multicriteria expected improvement that were considered in recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Theory of the hypervolume indicator: optimal μ-distributions and the choice of the reference point. In: Proceedings of the Tenth ACM SIGEVO Workshop on Foundations of Genetic Algorithms, pp. 87–102. ACM, Chicago (2009)

    Google Scholar 

  2. Couckuyt, I., Deschrijver, D., Dhaene, T.: Fast calculation of multiobjective probability of improvement and expected improvement criteria for Pareto optimization. J. Global Optim. 60 (3), 575–594 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Emmerich, M.: Single-and multi-objective evolutionary design optimization assisted by Gaussian random field metamodels. Ph.D. thesis, Fachbereich Informatik, Chair of Systems Analysis, University of Dortmund (2005)

    Google Scholar 

  4. Emmerich, M., Giannakoglou, K.C., Naujoks, B.: Single-and multiobjective evolutionary optimization assisted by Gaussian random field metamodels. IEEE Trans. Evol. Comput. 10 (4), 421–439 (2006)

    Article  Google Scholar 

  5. Emmerich, M., Deutz, A.H., Klinkenberg, J.W.: Hypervolume-based expected improvement: monotonicity properties and exact computation. In: 2011 IEEE Congress on Evolutionary Computation (CEC), pp. 2147–2154. IEEE, New Jersey (2011)

    Google Scholar 

  6. Gaida, D.: Dynamic real-time substrate feed optimization of anaerobic co-digestion plants. Ph.D. thesis, Leiden Institute of Advanced Computer Science (LIACS), Faculty of Science, Leiden University (2014)

    Google Scholar 

  7. Hupkens, I., Emmerich, M., Deutz, A.: Faster computation of expected hypervolume improvement. arXiv preprint arXiv:1408.7114 (2014)

    Google Scholar 

  8. Hupkens, I., Deutz, A., Yang, K., Emmerich, M.: Faster exact algorithms for computing expected hypervolume improvement. In: Evolutionary Multi-Criterion Optimization, pp. 65–79. Springer, Berlin, Heidelberg (2015)

    Google Scholar 

  9. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Global Optim. 13 (4), 455–492 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Keane, A.J.: Statistical improvement criteria for use in multiobjective design optimization. AIAA J. 44 (4), 879–891 (2006)

    Article  Google Scholar 

  11. Knowles, J.: ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. IEEE Trans. Evol. Comput. 10 (1), 50–66 (2006)

    Article  Google Scholar 

  12. Koch, P., Wagner, T., Emmerich, M.T., Bäck, T., Konen, W.: Efficient multi-criteria optimization on noisy machine learning problems. Appl. Soft Comput. 29, 357–370, New Jersey (2015)

    Google Scholar 

  13. Łaniewski-Wołłk, Ł., Obayashi, S., Jeong, S.: Development of expected improvement for multi-objective problem. In: Proceedings of 42nd Fluid Dynamics Conference/Aerospace Numerical Simulation Symposium (2010)

    Google Scholar 

  14. Mockus, J.: Bayesian Approach to Global Optimization: Theory and Applications, vol. 37. Springer Science & Business Media, New York (2012)

    MATH  Google Scholar 

  15. Mockus, J., Tiesis, V., Žilinskas, A.: The application of Bayesian methods for seeking the extremum. In: Towards Global Optimization, vol. 2, pp. 117–129. North-Holland, Amsterdam (1978)

    Google Scholar 

  16. Shimoyama, K., Sato, K., Jeong, S., Obayashi, S.: Comparison of the criteria for updating Kriging response surface models in multi-objective optimization. In: 2012 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE, New Jersey (2012)

    Google Scholar 

  17. Shimoyama, K., Sato, K., Jeong, S., Obayashi, S.: Updating Kriging surrogate models based on the hypervolume indicator in multi-objective optimization. J. Mech. Des. 135 (9), 094503 (2013)

    Article  Google Scholar 

  18. Shir, O.M., Emmerich, M., Bäck, T., Vrakking, M.J.: The application of evolutionary multi-criteria optimization to dynamic molecular alignment. In: IEEE Congress on Evolutionary Computation, 2007, CEC 2007, pp. 4108–4115. IEEE, New Jersey (2007)

    Google Scholar 

  19. Stein, M.L.: Interpolation of Spatial Data: Some Theory for Kriging. Springer Science & Business Media, New York (2012)

    Google Scholar 

  20. Tesch, M., Schneider, J., Choset, H.: Adapting control policies for expensive systems to changing environments. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 357–364. IEEE, New Jersey (2011)

    Google Scholar 

  21. Törn, A., Žilinskas, A.: Global Optimization. Springer, New York (1989)

    Book  MATH  Google Scholar 

  22. Vazquez, E., Bect, J.: Convergence properties of the expected improvement algorithm with fixed mean and covariance functions. J. Stat. Plan. Inference 140 (11), 3088–3095 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wagner, T., Emmerich, M., Deutz, A., Ponweiser, W.: On expected-improvement criteria for model-based multi-objective optimization. In: Parallel Problem Solving from Nature. PPSN XI, pp. 718–727. Springer, Berlin, Heidelberg (2010)

    Google Scholar 

  24. Zaefferer, M., Bartz-Beielstein, T., Naujoks, B., Wagner, T., Emmerich, M.: A case study on multi-criteria optimization of an event detection software under limited budgets. In: Evolutionary Multi-Criterion Optimization, pp. 756–770. Springer, Berlin, Heidelberg (2013)

    Google Scholar 

  25. Žilinskas, A., Mockus, J.: On one Bayesian method of search of the minimum. Avtomatika i Vychislitel’naya Teknika 4, 42–44 (1972)

    Google Scholar 

Download references

Acknowledgements

Hao Wang gratefully acknowledges support by the Netherlands Organisation for Scientific Research, NWO ICT PPP Project Grant “Process mining for multi-objective online control (PROMIMOOC)”. Kaifeng Yang acknowledges financial support from China Scholarship Council (CSC), CSC No. 201306370037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Deutz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Emmerich, M., Yang, K., Deutz, A., Wang, H., Fonseca, C.M. (2016). A Multicriteria Generalization of Bayesian Global Optimization. In: Pardalos, P., Zhigljavsky, A., Žilinskas, J. (eds) Advances in Stochastic and Deterministic Global Optimization. Springer Optimization and Its Applications, vol 107. Springer, Cham. https://doi.org/10.1007/978-3-319-29975-4_12

Download citation

Publish with us

Policies and ethics