Advertisement

Dynamic Global Optimization Methods for Determining Guaranteed Solutions in Chemical Engineering

  • Carlos Pérez-Galván
  • I. David L. BogleEmail author
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 107)

Abstract

Engineers seek optimal solutions in designing systems but a crucial element is to ensure bounded performance. For example, chemical reactors are often very heavy energy users so it is important to find designs that minimize energy use but the solution must be within strict safety limits.Currently, the deterministic solution of dynamic systems to global optimality can only be addressed for small problems. The solution of the ordinary differential equation (ODE) systems in a verified way is only able to address low dimensional problems mainly because the integration has to be stopped early due to the overestimation generated by the verified method. Chemical engineering researchers have used a range of techniques to tackle this problem using ways of finding tight over/under-estimators. This chapter will review research work in chemical engineering for such problems and present results of work we are undertaking using interval methods.In our work a verified solver that constructs upper and lower bounds on the dynamic variables of initial value problem (IVP) for ODEs is used in a dynamic global optimization method (sequential approach). Particular attention is paid to the reduction of the overestimation by means of interval contractors. The solver is used to provide guaranteed bounds on the objective function and on the first order sensitivity equations in a branch and bound framework. Uncertainty can be introduced in the dynamic constraints of the dynamic optimization problem and therefore it is possible to account for it in a guaranteed way. The chapter shows three examples from process engineering.

Keywords

Dynamic optimization Verified simulation Interval contractors Overestimation reduction 

Notes

Acknowledgements

Financial support from CONACYT (Mexico), UCL, and SEP DGRI (Mexico) is gratefully acknowledged.

References

  1. 1.
    Adjiman, C.S., Androulakis, I., Maranas, C., Floudas, C.A.: A global optimization method, aBB, for process design. Eur. Symp. Comput. Aided Process Eng. 20 (96), 419–424 (1996)Google Scholar
  2. 2.
    Bhatia, T., Biegler, L.T.: Dynamic optimization in the design and scheduling of multiproduct batch Plants. Ind. Eng. Chem. Res. 35 (7), 2234–2246 (1996)CrossRefGoogle Scholar
  3. 3.
    Biegler, L.T.: Nonlinear Programming Concepts, Algorithms, and Applications to Chemical Processes, 1 edn. SIAM, Philadelphia (2010)CrossRefzbMATHGoogle Scholar
  4. 4.
    Eijgenraam, P.: The Solution of Initial Value Problems Using Interval Arithmetic: Formulation and Analysis of an Algorithm. Mathematisch Centrum, Amsterdam (1981)zbMATHGoogle Scholar
  5. 5.
    Esposito, W.R., Floudas, C.A.: Deterministic global optimization in nonlinear optimal control problems. J. Glob. Optim. 17 (1–4), 97–126 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Esposito, W.R., Floudas, C.A.: Global optimization for the parameter estimation of differential-algebraic systems. Ind. Eng. Chem. Res. 39 (5), 1291–1310 (2000)CrossRefGoogle Scholar
  7. 7.
    Flores-Tlacuahuac, A., Biegler, L.T., Saldívar-Guerra, E.: Dynamic optimization of HIPS open-loop unstable polymerization reactors. Ind. Eng. Chem. Res. 44 (8), 2659–2674 (2005)CrossRefGoogle Scholar
  8. 8.
    Houska, B., Villanueva, M.E., Chachuat, B.: A validated integration algorithm for nonlinear ODEs using Taylor models and ellipsoidal calculus. In: 52nd IEEE Conference on Decision and Control, pp. 484–489, Florence (2013)Google Scholar
  9. 9.
    Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis. Springer, London (2001)CrossRefzbMATHGoogle Scholar
  10. 10.
    Kloppenburg, E., Gilles, E.D.: A new concept for operating simulated moving-bed processes. Chem. Eng. Technol. 22 (10), 813–817 (1999)CrossRefGoogle Scholar
  11. 11.
    Knuppel, O.: PROFIL/BIAS-A fast interval library. Computing 53, 277–287 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kruckeberg, F.: Ordinary differential equations. In: Hansen, E. (ed.) Topics in Interval Analysis, pp. 91–97. Clarendon Press, Oxford (1969)Google Scholar
  13. 13.
    Lin, Y., Stadtherr, M.A.: Deterministic global optimization for dynamic systems using interval analysis. In: 12th GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics (SCAN 2006), pp. 38–38 (2006)Google Scholar
  14. 14.
    Lin, Y., Stadtherr, M.A.: Deterministic global optimization for parameter estimation of dynamic systems. Ind. Eng. Chem. Res. 45 (25), 8438–8448 (2006)CrossRefGoogle Scholar
  15. 15.
    Lin, Y., Stadtherr, M.A.: Deterministic global optimization of nonlinear dynamic systems. AIChE J. 53 (4), 866–875 (2007)CrossRefGoogle Scholar
  16. 16.
    Lin, Y., Stadtherr, M.A.: Validated solutions of initial value problems for parametric ODEs. Appl. Numer. Math. 57 (10), 1145–1162 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Lohner, R.J.: Computation of guaranteed enclosures for the solutions of ordinary initial and boundary value problems. In: Cash, J.R., Gladwell, I. (eds.) Computational Ordinary Differential Equations, pp. 425–435. Clarendon Press, Oxford (1992)Google Scholar
  18. 18.
    Luus, R.: Optimal control by dynamic programming using systematic reduction in grid size. Int. J. Control 51 (5), 995–1013 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Makino, K., Berz, M.: Remainder differential algebras and their applications. In: Berz, M., Bischof, C., Corliss, G., Griewank, A. (eds.) Computational Differentiation: Techniques, Applications, and Tools. SIAM, Philadelphia (1996)Google Scholar
  20. 20.
    Makino, K., Berz, M.: COSY INFINITY version 9. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 558 (1), 346–350 (2006). Proceedings of the 8th International Computational Accelerator Physics Conference (ICAP) (2004)Google Scholar
  21. 21.
    Moore, R.E.: Interval arithmetic and automatic error analysis in digital computing. Ph.D. thesis, Stanford University (1962)Google Scholar
  22. 22.
    Moore, R.E., Kearfort, R.B., Cloud, M.J.: Introduction to Interval Analysis, vol. 22. SIAM, Philadelphia (2009)CrossRefGoogle Scholar
  23. 23.
    Nedialkov, N.S.: Implementing a rigorous ode solver through literate programming. In: Rauh, A., Auer, E. (eds.) Modeling, Design, and Simulation of Systems with Uncertainties. Mathematical Engineering, vol. 3, pp. 3–19. Springer, Berlin/Heidelberg (2011)CrossRefGoogle Scholar
  24. 24.
    Oldenburg, J., Marquardt, W., Heinz, D., Leineweber, D.B.: Mixed-logic dynamic optimization applied to batch distillation process design. AIChE J. 49 (11), 2900–2917 (2003)CrossRefGoogle Scholar
  25. 25.
    Papamichail, I., Adjiman, C.S.: A rigorous global optimization algorithm for problems with ordinary differential equations. J. Glob. Optim. 24, 1–33 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Papamichail, I., Adjiman, C.S.: Global optimization of dynamic systems. Comput. Chem. Eng. 28 (3), 403–415 (2004)CrossRefzbMATHGoogle Scholar
  27. 27.
    Perez-Galvan, C., Bogle, I.D.L.: Comparison between interval methods to solve initial value problems in chemical process design. In: Klemeš, J.J., Varbanov, P.S., Liew, P.Y. (eds.) 24th European Symposium on Computer Aided Process Engineering, vol. 33, pp. 1405–1410. Elsevier, Budapest (2014)CrossRefGoogle Scholar
  28. 28.
    Raghunathan, A.U., Soledad Diaz, M., Biegler, L.T.: An MPEC formulation for dynamic optimization of distillation operations. Comput. Chem. Eng. 28 (10), 2037–2052 (2004)CrossRefGoogle Scholar
  29. 29.
    Rauh, A., Auer, E.: Verified simulation of ODEs and DAEs in ValEncIA-IVP. Reliab. Comput. 15, 370–381 (2011)MathSciNetGoogle Scholar
  30. 30.
    Rauh, A., Brill, M., Günther, C.: A novel interval arithmetic approach for solving differential-algebraic equations with ValEncIA-IVP. Int. J. Appl. Math. Comput. Sci. 19 (3), 381–397 (2009)zbMATHGoogle Scholar
  31. 31.
    Rauh, A., Hofer, E., Auer, E.: Valencia-ivp: a comparison with other initial value problem solvers. In: Klemeš, J.J., Varbanov, P.S., Liew, P.Y. (eds.) 12th GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics, 2006. SCAN 2006, p. 36. IEEE, Duisburg (2006)Google Scholar
  32. 32.
    Sahlodin, A.M., Chachuat, B.: Convex/concave relaxations of parametric ODEs using Taylor models. Comput. Chem. Eng. 35, 844–857 (2011)CrossRefzbMATHGoogle Scholar
  33. 33.
    Sahlodin, A.M., Chachuat, B.: Discretize-then-relax approach for convex/concave relaxations of the solutions of parametric ODEs. Appl. Numer. Math. 61 (7), 803–820 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Scott, J.K., Barton, P.I.: Improved relaxations for the parametric solutions of ODEs using differential inequalities. J. Glob. Optim. 57 (1), 143–176 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Scott, J.K., Chachuat, B., Barton, P.I.: Nonlinear convex and concave relaxations for the solutions of parametric ODEs. Optim. Control Appl. Methods 34, 145–163 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Singer, A.B., Barton, P.I.: Global optimization with nonlinear ordinary differential equations. J. Glob. Optim. 34 (2), 159–190 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Singer, A.B., Taylor, J.W., Barton, P.I., Green, W.H.: Global dynamic optimization for parameter estimation in chemical kinetics. J. Phys. Chem. 110, 971–976 (2006)CrossRefGoogle Scholar
  38. 38.
    Stauning, O., Bendtsen, C.: FADBAD++ web page. http://www.fadbad.com/fadbad.html (2003)
  39. 39.
    Tjoa, I.B., Biegler, L.T.: Simultaneous solution and optimization strategies for parameter estimation of differential-algebraic equation systems. Ind. Eng. Chem. Res. 30 (2), 376–385 (1991)CrossRefGoogle Scholar
  40. 40.
    Villanueva, M.E., Houska, B., Chachuat, B.: On the stability of set-valued integration for parametric nonlinear odes. 24th European Symposium on Computer Aided Process Engineering, Pts A and B, vol. 33, pp. 595–600 (2014)Google Scholar
  41. 41.
    Villanueva, M.E., Houska, B., Chachuat, B.: Unified framework for the propagation of continuous-time enclosures for parametric nonlinear ODEs. J. Glob. Optim. 62 (3), 575–613 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Walter, W.: Differential and Integral Inequalities. Translated by Rosenblatt, L., Shampine, L. Springer, Heidelberg (1970)Google Scholar
  43. 43.
    Zhao, Y., Stadtherr, M.A.: Rigorous global optimization for dynamic systems subject to inequality path constraints. Ind. Eng. Chem. Res. 50 (22), 12678–12693 (2011)CrossRefGoogle Scholar
  44. 44.
    Žilinskas, J.: Comparison of packages for interval arithmetic. Informatica 16 (1), 145–154 (2005)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Žilinskas, J., Bogle, I.D.L.: Evaluation ranges of functions using balanced random interval arithmetic. Informatica 14 (3), 403–416 (2003)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Žilinskas, J., Bogle, I.D.L.: Balanced random interval arithmetic. Comput. Chem. Eng. 28 (5), 839–851 (2004). 10.1016/j.compchemeng.2004.02.020 CrossRefGoogle Scholar
  47. 47.
    Žilinskas, J., Bogle, I.D.L.: Global optimization: interval analysis and balanced interval arithmetic. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization, pp. 1346–1350. Springer, New York (2009). doi:10.1016/10.1007/978-0-387-74759-0_237CrossRefGoogle Scholar
  48. 48.
    Žilinskas, A., Žilinskas, J.: On efficiency of tightening bounds in interval global optimization. In: Applied Parallel Computing. State of the Art in Scientific Computing. Lecture Notes in Computer Science, vol. 3732, pp. 197–205. Springer, Heidelberg (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Centre for Process Systems Engineering, Department of Chemical EngineeringUniversity College LondonLondonUK

Personalised recommendations