Choosing Visualization Techniques for Multidimensional Data Projection Tasks: A Guideline with Examples

  • Ronak EtemadpourEmail author
  • Lars Linsen
  • Jose Gustavo Paiva
  • Christopher Crick
  • Angus Graeme Forbes
Part of the Communications in Computer and Information Science book series (CCIS, volume 598)


This paper presents a guideline for visualization designers who want to choose appropriate techniques for enhancing tasks involving multidimensional projection. Specifically, we adopt a user-centric approach in which we take user perception into consideration. Here, we focus on projection techniques that output 2D or 3D scatterplots that can then be used for a range of common data analysis tasks, which we categorize as pattern identification tasks, relation-seeking tasks, membership disambiguation tasks, or behavior comparison tasks. Our user-centric task categorization can be used to effectively guide the organization of multidimensional data projection layouts. Moreover, we present real-world examples that demonstrate effective choices made by visualization designers faced with complex datasets requiring dimensionality reduction.


Multidimensional data analysis Task taxonomy Multidimensional data projection User-centric evaluation 


  1. 1.
    Ahuja, N., Tuceryan, M.: Extraction of early perceptual structure in dot patterns: integrating region, boundary, and component gestalt. Comput. Vision Graph. Image Process. 48(3), 304–356 (1989)CrossRefGoogle Scholar
  2. 2.
    Albuquerque, G., Eisemann, M., Magnor, M.: Perception-based visual quality measures. In Proceedings of IEEE Symposium on Visual Analytics Science and Technology (VAST), pp. 13–20 (2011)Google Scholar
  3. 3.
    Amar, R., Eagan, J., Stasko, J.: Low-level components of analytic activity in information visualization. In: Proceedings of the 2005 IEEE Symposium on Information Visualization, INFOVIS 2005, p. 15. IEEE Computer Society, Washington, DC (2005)Google Scholar
  4. 4.
    Andrienko, G., Andrienko, N., Bak, P., Keim, D., Kisilevich, S., Wrobel, S.: A conceptual framework and taxonomy of techniques for analyzing movement. J. Vis. Lang. Comput. 22(3), 213–232 (2011)CrossRefGoogle Scholar
  5. 5.
    Andrienko, N.V., Andrienko, G.L., Gatalsky, P.: Visualization of spatio-temporal information in the internet. In: 11th International Workshop on Database and Expert Systems Applications (DEXA 2000), 6–8 September 2000, Greenwich, London, UK, pp. 577–585 (2000)Google Scholar
  6. 6.
    Borg, I., Groenen, P.J.F.: Modern Multidimensional Scaling Theory and Applications. Springer Series in Statistics, 2nd edn. Springer, New York (2010)zbMATHGoogle Scholar
  7. 7.
    Brehmer, M., Munzner, T.: A multi-level typology of abstract visualization tasks. IEEE Trans. Visual. Comput. Graphics (TVCG) 19(12), 2376–2385 (2013). (Proc.InfoVis)CrossRefGoogle Scholar
  8. 8.
    Collins, C., Penn, G., Carpendale, S.: Bubble sets: revealing set relations with isocontours over existing visualizations. IEEE Trans. Visual Comput. Graphics 15(6), 1009–1016 (2009)CrossRefGoogle Scholar
  9. 9.
    Cuadros, A. M., Paulovich, F. V., Minghim, R., Telles, G. P.: Point placement by phylogenetic trees and its application to visual analysis of document collections. In: Proceedings of the 2007 IEEE Symposium on Visual Analytics Science and Technology, pp. 99–106. IEEE Computer Society (2007)Google Scholar
  10. 10.
    Duncan, J., Humphreys, G.: Visual search and stimulus similarity. Psychol. Rev. 96, 433–458 (1989)CrossRefGoogle Scholar
  11. 11.
    Eades, P., Huang, W., Hong, S.: A force-directed method for large crossing angle graph drawing. CoRR, abs/1012.4559 (2010)Google Scholar
  12. 12.
    Eades, P.A.: A heuristic for graph drawing. Congressus Numerantium 42, 149–160 (1984)MathSciNetGoogle Scholar
  13. 13.
    Ess, A., Leibe, B., Schindler, K., van Gool, L.: A mobile vision system for robust multi-person tracking, pp. 1–8, Anchorage, AK, USA (2008)Google Scholar
  14. 14.
    Etemadpour, R., da Motta, R.C., de Souza P., Gustavo, J., Minghim, R., Ferreira, M.C., Linsen, L.: Role of human perception in cluster-based visual analysis of multidimensional data projections. In: 5th International Conference on Information Visualization Theory and Applications (IVAPP), pp. 107–113, Lisbon, Portugal (2014a)Google Scholar
  15. 15.
    Etemadpour, R., Motta, R., de Souza Paiva, J.G., Minghim, R., de Oliveira, M.C.F., Linsen, L.: Perception-based evaluation of projection methods for multidimensional data visualization. IEEE Trans. Visual. Comput. Graphics 21(1), 81–94 (2014b)CrossRefGoogle Scholar
  16. 16.
    Etemadpour, R., Murray, P., Forbes, A.G.: Evaluating density-based motion for big data visual analytics. In: IEEE International Conference on Big Data, pp. 451–460, Washington, DC (2014c)Google Scholar
  17. 17.
    Etemadpour, R., Olk, B., Linsen, L.: Eye-tracking investigation during visual analysis of projected multidimensional data with 2D scatterplots. In: 5th International Conference on Information Visualization Theory and Applications (IVAPP), pp. 233–246, Lisbon, Portugal (2014d)Google Scholar
  18. 18.
    Geng, X., Zhan, D.-C., Zhou, Z.-H.: Supervised nonlinear dimensionality reduction for visualization and classification. IEEE Trans. Syst. Man Cybern. Part B 35(6), 1098–1107 (2005)CrossRefGoogle Scholar
  19. 19.
    Henry, N., Fekete, J.: Matrixexplorer: a dual-representation system to explore social networks. IEEE Trans. Visual. Comput. Graphics 12, 677–684 (2006)CrossRefGoogle Scholar
  20. 20.
    Ingram, S., Munzner, T., Irvine, V., Tory, M., Bergner, S., Mller, T.: Workflows for dimensional analysis and reduction. In: IEEE VAST, pp. 3–10. IEEE (2010)Google Scholar
  21. 21.
    Ingram, S., Munzner, T., Olano, M.: Glimmer: multilevel MDS on the GPU. IEEE Trans. Visual. Comput. Graphics 15(2), 249–261 (2009)CrossRefGoogle Scholar
  22. 22.
    Jolliffe, I.T.: Pincipal Component Analysis. Springer-Verlag, New York (1986)CrossRefGoogle Scholar
  23. 23.
    Koffka, K.: Principles of Gestalt Psychology. Lund Humphries, London (1935)Google Scholar
  24. 24.
    Lewis, J.M., Ackerman, M.: A comparative study. In: 34th Annual Conference of the Cognitive Science Society, pp. 1870–1875 (2012)Google Scholar
  25. 25.
    Müller, E., Günnemann, S., Assent, I., Seidl, T.: Evaluating clustering in subspace projections of high dimensional data. PVLDB 2(1), 1270–1281 (2009)Google Scholar
  26. 26.
    Murray, P., Forbes, A.G.: Interactive visualization of multi-dimensional trajectory data. In: Proceedings of IEEE Visual Analytics Science and Technology (VAST), pp. 261–262, Paris, France (2014a)Google Scholar
  27. 27.
    Murray, P., Forbes, A.G.: Interactively exploring geotemporal relationships in demographic data via stretch projections. In: Proceedings of the ACM SIGSPATIAL International Workshop on Interacting with Maps (MapInteract), pp. 29–35, Dallas, Texas (2014b)Google Scholar
  28. 28.
    Paiva, J., Schwartz, W., Pedrini, H., Minghim, R.: An approach to supporting incremental visual data classification. IEEE Trans. Visual. Comput. Graphics 21(1), 4–17 (2015)CrossRefGoogle Scholar
  29. 29.
    Paiva, J.G.S., Florian, L., Pedrini, H., Telles, G.P., Minghim, R.: Improved similarity trees and their application to visual data classification. IEEE Trans. Visual. Comput. Graphics 17(12), 2459–2468 (2011)CrossRefGoogle Scholar
  30. 30.
    Paiva, J.G.S., Schwartz, W.R., Pedrini, H., Minghim, R.: Semi-supervised dimensionality reduction based on partial leastsquares for visual analysis of high dimensional data. Comput. Graph. Forum 31(3pt4), 1345–1354 (2012)CrossRefGoogle Scholar
  31. 31.
    Paulovich, F.V., Nonato, L.G., Minghim, R., Levkowitz, H.: Least square projection: a fast high-precision multidimensional projection technique and its application to document mapping. IEEE Trans. Visual. Comput. Graphics 14(3), 564–575 (2008)CrossRefGoogle Scholar
  32. 32.
    Peng, W., Ward, M.O., Rundensteiner, E.A.: Clutter reduction in multi-dimensional data visualization using dimension reordering. In: Ward, M.O., Munzner, T. (eds.) INFOVIS, pp. 89–96. IEEE Computer Society (2004)Google Scholar
  33. 33.
    Poco, J., Etemadpour, R., Paulovich, F.V., Long, T.V., Rosenthal, P., de Oliveira, M.C.F., Linsen, L., Minghim, R.: A framework for exploring multidimensional data with 3D projections. Comput. Graph. Forum 30(3), 1111–1120 (2011)CrossRefGoogle Scholar
  34. 34.
    Rensink, R.A., Baldridge, G.: The perception of correlation in scatterplots. Comput. Graph. Forum 29(3), 1203–1210 (2010)CrossRefGoogle Scholar
  35. 35.
    Rosenholtz, R., Twarog, N.R., Schinkel-Bielefeld, N., Wattenberg, M.: An intuitive model of perceptual grouping for HCI design. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2009, pp. 1331–1340. ACM, New York (2009)Google Scholar
  36. 36.
    Samet, H.: Foundations of Multidimensional and Metric Data Structures (The Morgan Kaufmann Series in Computer Graphics and Geometric Modeling). Morgan Kaufmann Publishers Inc., San Francisco (2005)Google Scholar
  37. 37.
    Schreck, T., von Landesberger, T., Bremm, S.: Techniques for precision-based visual analysis of projected data. In: Park, J., Hao, M.C., Wong, P.C., Chen, C. (eds.) VDA. SPIE Proceedings, vol. 7530, p. 75300. SPIE (2010)Google Scholar
  38. 38.
    Schwartz, W.R., Davis, L.S.: Learning discriminative appearance-based models using partial least squares. Rio de Janeiro, Brazil (2009)Google Scholar
  39. 39.
    Sears, A.: Aide: a step toward metric-based interface development tools. In: Proceedings of the 8th Annual ACM Symposium on User Interface and Software Technology, UIST 1995, pp. 101–110. ACM, New York (1995)Google Scholar
  40. 40.
    Sedlmair, M., Brehmer, M., Ingram, S., Munzner, T.: Gaps and guidance - UBC computer science technical report tr-2012-03. Technical report, The University of British Columbia (2012a)Google Scholar
  41. 41.
    Sedlmair, M., Tatu, A., Munzner, T., Tory, M.: A taxonomy of visual cluster separation factors. Comp. Graph. Forum 31(3pt4), 1335–1344 (2012b)CrossRefGoogle Scholar
  42. 42.
    Sips, M., Neubert, B., Lewis, J.P., Hanrahan, P.: Selecting good views of high-dimensional data using class consistency. Comput. Graph. Forum 28(3), 831–838 (2009). (Proc. EuroVis 2009)CrossRefGoogle Scholar
  43. 43.
    Song, Y., Zhou, D., Huang, J., Councill, I.G., Zha, H., Giles, C.L.: Text categorization for unstructured data on the web. In: the Sixth IEEE international Conference on Data Mining, (ICDM 2006). IEEE (2006)Google Scholar
  44. 44.
    Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-Wesley Longman, Boston (2005)Google Scholar
  45. 45.
    Tatu, A., Bak, P., Bertini, E., Keim, D.A., Schneidewind, J.: Visual quality metrics and human perception: an initial study on 2D projections of large multidimensional data. In: Proceedings of the Working Conference on Advanced Visual Interfaces (AVI 2010), pp. 49–56 (2010)Google Scholar
  46. 46.
    Tatu, A., Theisel, H., Magnor, M., Eisemann, M., Keim, D., Schneidewind, J., et al.: Combining automated analysis and visualization techniques for effective exploration of high-dimensional data (2009)Google Scholar
  47. 47.
    Tenembaum, J.B., de Silva, V., Langford, J.C.: A global geometric faramework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)CrossRefGoogle Scholar
  48. 48.
    Treisman, A.: Perceptual grouping and attention in visual search for features and for objects. Exper. Psychol. Hum. Percept. Perform. 8(2), 194–214 (1982)CrossRefGoogle Scholar
  49. 49.
    Tullis, T.S.: A system for evaluating screen formats: research and application. In: Hartson, H.R., Deborah, H. (eds.) Advances in Human-Computer Interaction, vol. 2, pp. 214–286 (1988)Google Scholar
  50. 50.
    Van Long, T., Linsen, L.: Visualizing high density clusters in multidimensional data using optimized star coordinates. Comput. Stat. 26(4), 655–678 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Villegas, J., Etemadpour, R., Forbes, A.G.: Evaluating the perception of different matching strategies for time-coherent animations. In: Proceedings of SPIE-IS&T Electronic Imaging Human Vision and Electronic Imaging XX 939412 (HVEI), San Francisco, California, vol. 9394, pp. 1–13 (2015)Google Scholar
  52. 52.
    Wold, H.: Partial Least Squares. Wiley, New York (2004)CrossRefGoogle Scholar
  53. 53.
    Zhang, X., Pan, F., Wang, W.: Finding local linear correlations in high dimensional data. In: IEEE 30th International Conference on Data Engineering, pp. 130–139 (2014)Google Scholar
  54. 54.
    Zhang, Y., Passmore, P.J., Bayford, R.H.: Visualization of multidimensional and multimodal tomographic medical imaging data, a case study. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 367(1900), 3121–3148 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ronak Etemadpour
    • 1
    Email author
  • Lars Linsen
    • 2
  • Jose Gustavo Paiva
    • 3
  • Christopher Crick
    • 1
  • Angus Graeme Forbes
    • 4
  1. 1.Oklahoma State UniversityStillwaterUSA
  2. 2.Jacobs UniversityBremenGermany
  3. 3.Federal University of UberlandiaUberlandiaBrazil
  4. 4.University of Illinois at ChicagoChicagoUSA

Personalised recommendations