Compression and Heuristic Caching for GPU Particle Tracing in Turbulent Vector Fields

  • Marc Treib
  • Kai Bürger
  • Jun WuEmail author
  • Rüdiger Westermann
Part of the Communications in Computer and Information Science book series (CCIS, volume 598)


Particle tracing in fully resolved turbulent vector fields is challenging due to their extreme resolution. Since particles can move along arbitrary paths through large parts of the domain, particle integration requires access to the entire field in an unpredictable order. Thus, techniques for particle tracing in such fields require a careful design to reduce performance constraints caused by memory and communication bandwidth. One possibility to achieve this is data compression, but so far it has been considered rather hesitantly due to supposed accuracy issues. We shed light on the use of data compression for turbulent vector fields, motivated by the observation that particle traces are always afflicted with inaccuracy. We quantitatively analyze the additional inaccuracies caused by lossy compression. We propose an adaptive data compression scheme using the discrete wavelet transform and integrate it into a block-based particle tracing approach. Furthermore, we present a priority-based GPU caching scheme to reduce memory access operations. In some experiments we confirm that the compression has only minor impact on the accuracy of the trajectories, and that on a desktop system our technique can achieve comparable performance to previous approaches on supercomputers.


Vector fields Turbulence Particle tracing Data compression Data streaming 



The work was partly funded by the European Union under the ERC Advanced Grant 291372: Safer-Vis - Uncertainty Visualization for Reliable Data Discovery. The authors want to thank Charles Meneveau from Johns Hopkins University and Tobias Pfaffelmoser from TUM for helpful discussions and constructive criticism.


  1. 1.
    Treib, M., Bürger, K., Reichl, F., Meneveau, C., Szalay, A., Westermann, R.: Turbulence visualization at the terascale on desktop PCs. IEEE Trans. Vis. Comput. Graphics 18, 2169–2177 (2012)CrossRefGoogle Scholar
  2. 2.
    Li, Y., Perlman, E., Wan, M., Yang, Y., Meneveau, C., Burns, R., Chen, S., Szalay, A., Eyink, G.: A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence. J. Turbul. 9, N31 (2008)CrossRefzbMATHGoogle Scholar
  3. 3.
    Post, F.H., Vrolijk, B., Hauser, H., Laramee, R.S., Doleisch, H.: The state of the art in flow visualisation: feature extraction and tracking. Comput. Graph. Forum 22, 775–792 (2003)CrossRefGoogle Scholar
  4. 4.
    Laramee, R.S., Hauser, H., Doleisch, H., Vrolijk, B., Post, F.H., Weiskopf, D.: The state of the art in flow visualization: dense and texture-based techniques. Comput. Graph. Forum 23, 203–221 (2004)CrossRefGoogle Scholar
  5. 5.
    McLoughlin, T., Laramee, R.S., Peikert, R., Post, F.H., Chen, M.: Over two decades of integration-based, geometric flow visualization. Comput. Graph. Forum 29, 1807–1829 (2010)CrossRefGoogle Scholar
  6. 6.
    Teitzel, C., Grosso, R., Ertl, T.: Efficient and reliable integration methods for particle tracing in unsteady flows on discrete meshes. In: Lefer, W., Grave, M. (eds.) Visualization in Scientific Computing 1997. Eurographics, pp. 31–41. Springer, Vienna (1997)Google Scholar
  7. 7.
    Yeung, P.K., Pope, S.B.: An algorithm for tracking fluid particles in numerical simulations of homogeneous turbulence. J. Comput. Phys. 79, 373–416 (1988)CrossRefzbMATHGoogle Scholar
  8. 8.
    Balachandar, S., Maxey, M.R.: Methods for evaluating fluid velocities in spectral simulations of turbulence. J. Comput. Phys. 83, 96–125 (1989)CrossRefzbMATHGoogle Scholar
  9. 9.
    Rovelstad, A.L., Handler, R.A., Bernard, P.S.: The effect of interpolation errors on the Lagrangian analysis of simulated turbulent channel flow. J. Comput. Phys. 110, 190–195 (1994)CrossRefzbMATHGoogle Scholar
  10. 10.
    Schirski, M., Gerndt, A., van Reimersdahl, T., Kuhlen, T., Adomeit, P., Lang, O., Pischinger, S., Bischof, C.H.: ViSTA FlowLib: a framework for interactive visualization and exploration of unsteady flows in virtual environments. In: 9th Eurographics Workshop on Virtual Enviroments, pp. 77–86 (2003)Google Scholar
  11. 11.
    Krüger, J., Kipfer, P., Kondratieva, P., Westermann, R.: A particle system for interactive visualization of 3D flows. IEEE Trans. Vis. Comput. Graph. 11, 744–756 (2005)CrossRefGoogle Scholar
  12. 12.
    Schirski, M., Bischof, C., Kuhlen, T.: Interactive particle tracing on tetrahedral grids using the GPU. In: Proceedings of Vision, Modeling, and Visualization (VMV), pp. 153–160 (2006)Google Scholar
  13. 13.
    Bürger, K., Schneider, J., Kondratieva, P., Krüger, J., Westermann, R.: Interactive visual exploration of unsteady 3D flows. In: Eurographics/IEEE VGTC Visualization (EuroVis) (2007)Google Scholar
  14. 14.
    Murray, L.: GPU acceleration of Runge-Kutta integrators. IEEE Trans. Parallel Distrib. Syst. 23, 94–101 (2011)CrossRefGoogle Scholar
  15. 15.
    Sayood, K.: Introduction to Data Compression, 3rd edn. Morgan Kaufmann Publishers Inc., San Francisco (2005)zbMATHGoogle Scholar
  16. 16.
    Rodriguez, M.B., Gobbetti, E., Guitián, J.I., Makhinya, M., Marton, F., Pajarola, R., Suter, S.: A survey of compressed GPU-based direct volume rendering. In: Eurographics 2013 - STARs, pp. 117–136 (2013)Google Scholar
  17. 17.
    Treib, M., Reichl, F., Auer, S., Westermann, R.: Interactive editing of gigasample terrain fields. Comput. Graph. Forum 31, 383–392 (2012)CrossRefGoogle Scholar
  18. 18.
    Lane, D.A.: UFAT–a particle tracer for time-dependent flow fields. In: IEEE Visualization, pp. 257–264 (1994)Google Scholar
  19. 19.
    Bruckschen, R., Kuester, F., Hamann, B., Joy, K.I.: Real-time out-of-core visualization of particle traces. In: Proceedings of IEEE 2001 Symposium on Parallel and Large-Data Visualization and Graphics, pp. 45–50 (2001)Google Scholar
  20. 20.
    Ellsworth, D., Green, B., Moran, P.: Interactive terascale particle visualization. In: IEEE Visualization, pp. 353–360 (2004)Google Scholar
  21. 21.
    Pugmire, D., Childs, H., Garth, C., Ahern, S., Weber, G.H.: Scalable computation of streamlines on very large datasets. In: Proceedings of the Conference on High Performance Computing, Networking, Storage and Analysis, pp. 16: 1–16: 12 (2009)Google Scholar
  22. 22.
    Camp, D., Garth, C., Childs, H., Pugmire, D., Joy, K.: Streamline integration using MPI-hybrid parallelism on a large multicore architecture. IEEE Trans. Vis. Comput. Graph. 17, 1702–1713 (2011)CrossRefGoogle Scholar
  23. 23.
    Nouanesengsy, B., Lee, T.Y., Shen, H.W.: Load-balanced parallel streamline generation on large scale vector fields. IEEE Trans. Vis. Comput. Graph. 17, 1785–1794 (2011)CrossRefGoogle Scholar
  24. 24.
    Peterka, T., Ross, R., Nouanesengsy, B., Lee, T.Y., Shen, H.W., Kendall, W., Huang, J.: A study of parallel particle tracing for steady-state and time-varying flow fields. In: Parallel Distributed Processing Symposium (IPDPS), pp. 580–591 (2011)Google Scholar
  25. 25.
    Yu, H., Wang, C., Ma, K.L.: Parallel hierarchical visualization of large time-varying 3D vector fields. In: Proceedings of ACM/IEEE Conference on Supercomputing, pp. 24:1–24:12 (2007)Google Scholar
  26. 26.
    Isenburg, M., Lindstrom, P., Snoeyink, J.: Lossless compression of predicted floating-point geometry. Comput. Aided Des. 37, 869–877 (2005)CrossRefzbMATHGoogle Scholar
  27. 27.
    Lindstrom, P., Isenburg, M.: Fast and efficient compression of floating-point data. IEEE Trans. Vis. Comput. Graph. 12, 1245–1250 (2006)CrossRefGoogle Scholar
  28. 28.
    Fout, N., Ma, K.L.: An adaptive prediction-based approach to lossless compression of floating-point volume data. IEEE Trans. Vis. Comput. Graph. 18, 2295–2304 (2012)CrossRefGoogle Scholar
  29. 29.
    Fout, N., Ma, K.L.: Fuzzy volume rendering. IEEE Trans. Vis. Comput. Graph. 18, 2335–2344 (2013)CrossRefGoogle Scholar
  30. 30.
    Zheng, Z., Xu, W., Mueller, K.: VDVR: Verifiable volume visualization of projection-based data. IEEE Trans. Vis. Comput. Graph. 16, 1515–1524 (2010)CrossRefGoogle Scholar
  31. 31.
    Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proc. IEEE 93, 216–231 (2005)CrossRefGoogle Scholar
  32. 32.
    Eiter, T., Mannila, H.: Computing discrete Frèchet distance. Technical report CD-TR 94/64, Technische Universität Wien (1994)Google Scholar
  33. 33.
    Aurell, E., Boffetta, G., Crisanti, A., Paladin, G., Vulpiani, A.: Predictability in the large: an extension of the concept of Lyapunov exponent. J. Phys. A: Math. Gen. 30, 1–26 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Dormand, J.R., Prince, P.J.: A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 6, 19–26 (1980)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Marc Treib
    • 1
  • Kai Bürger
    • 1
  • Jun Wu
    • 1
    Email author
  • Rüdiger Westermann
    • 1
  1. 1.Department of Computer ScienceTechnische Universität MünchenMunichGermany

Personalised recommendations