Skip to main content

Estimating Visual Motion Using an Event-Based Artificial Retina

  • Conference paper
Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2015)

Abstract

Biologically inspired computational models of visual processing often utilize conventional frame-based cameras for data acquisition. Instead, the Dynamic Vision Sensor (DVS) emulates the main processing sequence of the mammalian retina and generates spike-trains to encode temporal changes in the luminance distribution of a visual scene. Based on such sparse input representation we propose neural mechanisms for initial motion estimation and integration functionally related to the dorsal stream in the visual cortical hierarchy. We adapt the spatio-temporal filtering scheme as originally suggested by Adelson and Bergen to make it consistent with the input representation generated by the DVS. In order to regulate the overall activation of single neurons against a pool of neighboring cells, we incorporate a competitive stage that operates upon the spatial as well as the feature domain. The impact of such normalization stage is evaluated using information theoretic measures. Results of optical flow estimation were analyzed using synthetic ground truth data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Litzenberger, M., Belbachir, A.N., Donath, N., Gritsch, G., Garn, H., Kohn, B., Posch, C., Schraml, S.: Estimation of vehicle speed based on asynchronous data from a silicon retina optical sensor. In: IEEE Intelligent Transportation Systems Conference Toronto, Canada, pp. 17–20 (2006)

    Google Scholar 

  2. Liu, S., Delbruck, T.: Neuromorphic sensory systems. Neurobiology 20, 288–295 (2010)

    Google Scholar 

  3. Lichtsteiner, P., Posch, C., Delbruck, T.: A 128 \(\times \) 128 120 db 15 \(\mu s\) latency asynchronous temporal contrast vision sensor. IEEE J. Solid-State Circuits 43, 566–576 (2008)

    Article  Google Scholar 

  4. Delbruck, T., Lichtsteiner, P.: Fast sensory motor control based on event-based hybrid neuromorphic-procedural system. In: IEEE International Symposiom on Circuit and System, pp. 845–848 (2007)

    Google Scholar 

  5. Litzenberger, M., Posch, C., Bauer, D., Belbachir, A.N., Schon, P., Kohn, B., Garn, H.: Embedded vision system for real-time object tracking using an asynchronous transient vision sensor. In: 12th - Signal Processing Education Workshop. IEEE DSPW, pp. 173–178 (2006)

    Google Scholar 

  6. Ni, Z., Pacoret, C., Benosman, R., Ieng, S., Regnier, S.: Asynchronous event-based high speed vision for microparticle tracking. J. Microsc. 43, 1365–2818 (2011)

    Google Scholar 

  7. Abdul-Kreem, L.I., Neumann, H.: Bio-inspired model for motion estimation using address event representation. In: 10th International Conference on Computer Vision Theory and Application, VISIGRAPP, Berlin, Germany, 11–14 March 2015

    Google Scholar 

  8. Adelson, E., Bergen, J.: Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am. 2, 90–105 (1985)

    Article  Google Scholar 

  9. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J.G. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Drulea, M., Nedevschi, S.: Motion estimation using the correlation transform. IEEE Trans. Image Process. 22, 1057–7149 (2013)

    Article  Google Scholar 

  11. Fleet, D., Jepson, A.: Computation of component image velocity from local phase information. Int. J. Comput. Vis. 5, 77–104 (1990)

    Article  Google Scholar 

  12. Horn, B., Schunck, B.: Determining optical flow. Artif. Intell. 17, 185–203 (1981)

    Article  Google Scholar 

  13. Benosman, R., Leng, S., Clercq, C., Bartolozzi, C., Srinivasan, M.: Asynchronous framless event-based opticlal flow. Neural Netw. 27, 32–37 (2012)

    Article  Google Scholar 

  14. Lucas, B.D., Kanade, T.: An iterative image registration technique with and application to stereo vision. In: Proceedings of Imaging Understanding Workshop, pp. 121–130 (1981)

    Google Scholar 

  15. Tschechne, S., Brosch, T., Sailer, R., Egloffstein, N., Abdul-Kreem, L.I., Neumann, H.: On event-based motion detection and integration. In: Proceedings of 8th International Conference on Bio-inspired Information and Communication Technologies, BICT, December 1–3, Boston, MA, USA. ACM digital library (2014)

    Google Scholar 

  16. Tschechne, S., Sailer, R., Neumann, H.: Bio-inspired optic flow from event-based neuromorphic sensor input. In: El Gayar, N., Schwenker, F., Suen, C. (eds.) ANNPR 2014. LNCS, vol. 8774, pp. 171–182. Springer, Heidelberg (2014)

    Google Scholar 

  17. De Valois, R., Cottarisb, N.P., Mahonb, L.E., Elfara, S.D., Wilsona, J.A.: Spatial and temporal receptive fields of geniculate and cortical cells and directional selectivity. Vis. Res. 40, 3685–3702 (2000)

    Article  Google Scholar 

  18. Brosch, T., Tschechne, S., Neumann, H.: On event-based optical flow detection. Front. Neurosci. 9, Article No. 137, 1–15 (2015)

    Google Scholar 

  19. Ringach, D.L.: Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex. Neurophysiology 88, 455–463 (2002)

    Google Scholar 

  20. Carandini, M., Heeger, D.J.: Normalization as a canonical neural computation. Nat. Rev. Neurosci. 13, 51–62 (2012)

    Article  Google Scholar 

  21. Brosch, T., Neumann, H.: Computing with a canonical neural circuits model with pool normalization and modulating feedback. Neural Comput. 26, 2735–2789 (2014)

    Article  MathSciNet  Google Scholar 

  22. Blomfield, S.: Arithmetical operations performed by nerve cells. Brain Res. 69, 115–124 (1974)

    Article  Google Scholar 

  23. Dayan, P., Abbot, L.F.: Theoretical Neuroscience. MIT Press, Cambridge (2001)

    Google Scholar 

  24. Silver, R.A.: Neuronal arithmetic. Nat. Rev. Neurosci. 11, 474–489 (2010)

    Article  Google Scholar 

  25. Grossberg, S.: Nonlinear neural networks: principles, mechanisms, and architectures. Neural Netw. 1, 17–61 (1988)

    Article  Google Scholar 

  26. Bouecke, J., Tlapale, E., Kornprobst, P., Neumann, H.: Neural mechanisms of motion detection, integration, and segregation: from biology to artificial image processing systems. EURASIP J. Adv. Signal Process. 2011, Article ID 781561, 22 (2010). doi: 10.1155/2011/781561

  27. Lyu, S., Simoncelli, E.P.: Nonlinear extraction of independent components of natural images using radial gaussianization. Neural Comput. 21, 1485–1519 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Bayerl, P., Neumann, H.: Disambiguating visual motion through contextual feedback modulation. Neural Comput. 16, 2041–2066 (2004)

    Article  MATH  Google Scholar 

  29. Yo, C., Wilson, H.: Perceived direction of moving two-dimensional patterns depends on duration, contrast and eccentricity. Vis. Res. 32, 135–147 (1992)

    Article  Google Scholar 

  30. Adelson, E., Movshon, J.: Phenomenal coherence of moving visual pattern. Nature 300, 523–525 (1982)

    Article  Google Scholar 

  31. Simoncelli, E.: Bayesian multiscale differential optical flow. In: Handbook of Computer Vision and Applications, Chap. 14. Academic Press (1999)

    Google Scholar 

  32. Caplovitz, G., Hsieh, P., Tse, P.: Mechanisms underlying the perceived angular velocity of a rigidly rotating object. Vis. Res. 46, 2877–2893 (2006)

    Article  Google Scholar 

  33. Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. J. Neurophysiol. 28, 229–289 (1965)

    Google Scholar 

  34. Pack, C.C., Livingstone, M.S., Duffy, K.R., Born, R.T.: End-stopping and the aperture problem: two-dimensional motion signals in macaque v1. Neuron 39, 671–680 (2003)

    Article  Google Scholar 

  35. Tsui, J.M.G., Hunter, N., Born, R.T., Pack, C.C.: The role of v1 surround suppression in mt motion integration. J. Neurophysiol. 24, 3123–3138 (2010)

    Article  Google Scholar 

  36. Studený, M., Vejnarová, J.: The multiinformation function as a tool for measuring stochastic dependence. In: Jordan, M.I. (ed.) Learning in Graphical Models. NATO ASI Series, vol. 89, pp. 261–297. Springer, Heidelberg (1998). (Kluwer Academic Publishers)

    Chapter  Google Scholar 

  37. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley, Hoboken (2006)

    MATH  Google Scholar 

  38. Lyu, S., Simoncelli, E.P.: Nonlinear extraction of independent components of natural images using radial gaussianization. Neural Comput. 21, 1485–1519 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Strout, J.J., Pantle, A., Mills, S.L.: An energy model of interframe interval effects in single-step apparent motion. Vis. Res. 34, 3223–3240 (1994)

    Article  Google Scholar 

  40. Emerson, R.C., Bergen, J.R., Adelson, E.H.: Directionally selective complex cells and the computation of motion energy in cat visual cortex. Vis. Res. 32, 203–218 (1992)

    Article  Google Scholar 

  41. Challinor, K.L., Mather, G.: A motion-energy model predicts the direction discrimination and mae duration of two-stroke apparent motion at high and low retinal illuminance. Visi. Res. 50, 1109–1116 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

LIAK. has been supported by grants from the Ministry of Higher Education and Scientific Research (MoHESR) Iraq and from the German Academic Exchange Service (DAAD). HN. acknowledges support from DFG in the Collaborative Research Center SFB/TR (A companion technology for cognitive technical systems). The authors would like to thank M. Schels for his help in recording biological motion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luma Issa Abdul-Kreem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Abdul-Kreem, L.I., Neumann, H. (2016). Estimating Visual Motion Using an Event-Based Artificial Retina. In: Braz, J., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2015. Communications in Computer and Information Science, vol 598. Springer, Cham. https://doi.org/10.1007/978-3-319-29971-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29971-6_21

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29970-9

  • Online ISBN: 978-3-319-29971-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics