A Sketch-Based Interface for 2D Illustration of Vascular Structures, Diseases, and Treatment Options with Real-Time Blood Flow

  • Patrick SaalfeldEmail author
  • Alexandra Baer
  • Uta Preim
  • Bernhard Preim
  • Kai Lawonn
Part of the Communications in Computer and Information Science book series (CCIS, volume 598)


We present a sketching interface, which enables physicians to illustrate various vascular structures, diseases, and treatment options with integrated blood flow. This sketch-based interface provides medical doctors with an effective tool to illustrate different medical scenarios and support patient education. This work integrates methods from sketch-based interfaces and GPU-supported computational fluid dynamics. The usability of the prototype was assessed qualitatively and quantitatively. Additionally, we performed a structured interview with a physician to evaluate the benefits with respect to patient education. The results of the evaluation confirmed the usability of the prototype as well as the usefulness to support physicians during the process of patient education.


Sketch-based interface Vascular diseases Treatment options Patient education Computational fluid dynamics 



This work was partially funded by the German Federal Ministry of Education and Research (BMBF) within the research campus STIMULATE under grant number ‘13GW0095A’.


  1. 1.
    Mendis, S., Puska, P., Norrving, B.: Global Atlas on Cardiovascular Disease Prevention and Control. Nonserial Publications Series. World Health Organization in collaboration with the World Heart Federation and the World Stroke Organization (2011)Google Scholar
  2. 2.
    European Heart Network: European cardiovascular disease statistics (2012). (last visited: 19 August 2015)
  3. 3.
    Keulers, B.: Computer-based Patient Education: Its Potential in General and Plastic Surgery. Ph.D. thesis, University Nijmegen (2008)Google Scholar
  4. 4.
    Lidal, E.M.: Sketch-based Storytelling for Cognitive Problem Solving. Ph.D. thesis, Department of Informatics, University of Bergen, Norway (2013)Google Scholar
  5. 5.
    Pihuit, A., Cani, M.P., Palombi, O.: Sketch-based modeling of vascular systems: a first step towards interactive teaching of anatomy. In: Proceedings of the Sketch-Based Interfaces and Modeling Symposium, pp. 151–158 (2010)Google Scholar
  6. 6.
    Saalfeld, P., Baer, A., Preim, U., Preim, B., Lawonn, K.: Sketching 2D vessels and vascular diseases with integrated blood flow. In: Proceedings of the International Conference on Computer Graphics Theory and Applications (GRAPP), pp. 379–390 (2015)Google Scholar
  7. 7.
    Zhu, B., Iwata, M., Haraguchi, R., Ashihara, T., Umetani, N., Igarashi, T., Nakazawa, K.: Sketch-based dynamic illustration of fluid systems. In: Proceedings of the SIGGRAPH Asia Conference, pp. 134:1–134:8. ACM (2011)Google Scholar
  8. 8.
    Kutikhin, A., Brusina, E., Yuzhalin, A.E.: A hypothesis of virus-driven atherosclerosis. Viruses and Atherosclerosis. SpringerBriefs in Immunology, vol. 4, pp. 1–3. Springer, New York (2013)CrossRefGoogle Scholar
  9. 9.
    Bederson, J.B., Connolly, E.S., Batjer, H.H., Dacey, R.G., Dion, J.E., Diringer, M.N., Duldner, J.E., Harbaugh, R.E., Patel, A.B., Rosenwasser, R.H.: Guidelines for the management of aneurysmal subarachnoid hemorrhage. Stroke 40, 994–1025 (1994)CrossRefGoogle Scholar
  10. 10.
    Neugebauer, M., Diehl, V., Skalej, M., Preim, B.: Geometric reconstruction of the ostium of cerebral aneurysms. In: Proceedings of VMV 2010-Vision, Modeling, Visualization. pp. 307–314 (2010)Google Scholar
  11. 11.
    Gasteiger, R.: Visual Exploration of Cardiovascular Hemodynamics. Ph.D. thesis, Otto-von-Guericke University Magdeburg (2014)Google Scholar
  12. 12.
    Teitelbaum, G.P., Higashida, R.T., Halbach, V.V., Larsen, D.W., McDougall, C.G., Dowd, C.F., Hieshima, G.B.: Flow-directed use of electrolytically detachable platinum embolization coils. J. Vasc. Interv. Radiol. 5, 453–456 (1994)CrossRefGoogle Scholar
  13. 13.
    Wong, G.K., Tan, H.B., Kwan, M.C., Ng, R.Y., Yu, S.C., Zhu, X.L., Poon, W.S.: Evolution of intracranial aneurysm treatment: from Hunterian ligation to the flow diverter. Surg. Pract. 15, 16–20 (2011)CrossRefGoogle Scholar
  14. 14.
    Bridson, R.: Fluid Simulation for Computer Graphics. A K Peters/CRC Press, Boca Raton (2008)CrossRefGoogle Scholar
  15. 15.
    Ciarlet, P., Glowinski, R., Lions, J.: Numerical Methods for Non-Newtonian Fluids: Special Volume. Handbook of Numerical Analysis. Elsevier, New York (2011)Google Scholar
  16. 16.
    Ferziger, J.H., Perić, M.: Compressible flow. Computational Methods for Fluid Dynamics, pp. 309–328. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Müller, M., Schirm, S., Teschner, M.: Interactive blood simulation for virtual surgery based on smoothed particle hydrodynamics. Technol. Health Care 12, 25–31 (2004)Google Scholar
  18. 18.
    Qin, J., Pang, W.M., Nguyen, B.P., Ni, D., Chui, C.K.: Particle-based simulation of blood flow and vessel wall interactions in virtual surgery. In: Proceedings of the Symposium on Information and Communication Technology, pp. 128–133 (2010)Google Scholar
  19. 19.
    Hansen, C., Johnson, C.: The Visualization Handbook. Butterworth-Heinemann, Waltham (2005). Referex EngineeringGoogle Scholar
  20. 20.
    Weiskopf, D.: Vector field visualization. GPU-Based Interactive Visualization Techniques, pp. 81–159. Springer, Heidelberg (2007)Google Scholar
  21. 21.
    Boring, E., Pang, A.: Directional flow visualization of vector fields. In: Proceedings of the Conference on Visualization, pp. 389–392 (1996)Google Scholar
  22. 22.
    Jorge, J., Samavati, F.: Sketch-based Interfaces and Modeling. Springer, London (2011)CrossRefGoogle Scholar
  23. 23.
    Sutherland, I.E.: Sketchpad, A Man-Machine Graphical Communication System. Outstanding Dissertations in the Computer Sciences. Garland Publishing, New York (1963)Google Scholar
  24. 24.
    Preim, B., Dachselt, R.: Interaktive Systeme: User Interface Engineering, 3D-Interaktion, Natural User Interfaces, vol. 2. Springer, Heidelberg (2015)Google Scholar
  25. 25.
    van Dam, A.: Post-WIMP user interfaces. Commun. ACM 40, 63–67 (1997)Google Scholar
  26. 26.
    Xu, X., Liu, W., Jin, X., A, Z.S.: Sketch-based user interface for creative tasks. In: Proceedings of Asia Pacific Conference on Computer Human Interaction, pp. 560–570 (2002)Google Scholar
  27. 27.
    Naya, F., Contero, M., Aleixos, N., Company, P.: ParSketch: a sketch-based interface for a 2D parametric geometry editor. In: Jacko, J.A. (ed.) HCI 2007. LNCS, vol. 4551, pp. 115–124. Springer, Heidelberg (2007)Google Scholar
  28. 28.
    Igarashi, T., Matsuoka, S., Kawachiya, S., Tanaka, H.: Interactive beautification: a technique for rapid geometric design. In: Proceedings of ACM Symposium on User Interface Software and Technology, pp. 105–114 (1997)Google Scholar
  29. 29.
    Herold, J., Stahovich, T.F.: The Open image in new window; recognizer: a fast, accurate, and easy-to-implement handwritten gesture recognition technique. In: Proceedings of the International Symposium on Sketch-Based Interfaces and Modeling. SBIM 2012, Eurographics Association, pp. 39–46 (2012)Google Scholar
  30. 30.
    Lawonn, K., Saalfeld, P., Preim, B.: Illustrative visualization of endoscopic views. In: Bildverarbeitung für die Medizin (BVM) pp. 276–281 (2014)Google Scholar
  31. 31.
    Harris, M.J.: GPU GEMS Chapter 38, Fast Fluid Dynamics Simulation on the GPU. Pearson Higher Education, New York (2004)Google Scholar
  32. 32.
    Stam, J.: Stable fluids. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques (ACM SIGGRAPH), pp. 121–128 (1999)Google Scholar
  33. 33.
    Butcher, J.C.: A history of Runge-Kutta methods. Appl. Numer. Math. 20, 247–260 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Krüger, J., Westermann, R.: Linear algebra operators for GPU implementation of numerical algorithms. ACM Trans. Graph. 22, 908–916 (2003)CrossRefGoogle Scholar
  35. 35.
    Wu, E., Liu, Y., Liu, X.: An improved study of real-time fluid simulation on GPU: research articles. Comput. Animat. Virtual Worlds 15, 139–146 (2004)CrossRefGoogle Scholar
  36. 36.
    Glaßer, S., Lawonn, K., Preim, B.: Visualization of 3D cluster results for medical tomographic image data. In: Proceedings of Conference on Computer Graphics Theory and Applications (VISIGRAPP/GRAPP), pp. 169–176 (2014)Google Scholar
  37. 37.
    Taubin, G.: Curve and surface smoothing without shrinkage. In: Proceedings of the International Conference on Computer Vision, pp. 852–857. IEEE Computer Society (1995)Google Scholar
  38. 38.
    Heckel, F., Moltz, J.H., Tietjen, C., Hahn, H.K.: Sketch-based editing tools for tumour segmentation in 3D medical images. Comput. Graph. Forum 32, 144–157 (2013)CrossRefGoogle Scholar
  39. 39.
    Prmper, J.: Der Benutzungsfragebogen ISONORM 9241/10: Ergebnisse zur Reliabilität und Validität. In: Software-Ergonomie: Usability Engineering: Integration von Mensch-Computer-Interaktion und Software-Entwicklung, pp. 254–262 (1997)Google Scholar
  40. 40.
    Lawonn, K., Gasteiger, R., Preim, B.: Adaptive surface visualization of vessels with animated blood flow. Comput. Graph. Forum 33(8), 16–27 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Patrick Saalfeld
    • 1
    Email author
  • Alexandra Baer
    • 1
  • Uta Preim
    • 2
  • Bernhard Preim
    • 1
  • Kai Lawonn
    • 1
  1. 1.Department of Simulation and GraphicsOtto-von-Guericke UniversityMagdeburgGermany
  2. 2.Department of Diagnostic RadiologyMunicipal Hospital MagdeburgMagdeburgGermany

Personalised recommendations