A Generalized Structure from Motion Framework for Central Projection Cameras

  • Christiano Couto GavaEmail author
  • Didier Stricker
Part of the Communications in Computer and Information Science book series (CCIS, volume 598)


This paper presents a novel Structure from Motion (SfM) framework designed for central projection cameras. The goal is to support future large scale multi-view 3D reconstruction algorithms. We believe that these algorithms will be able to benefit from several different sources of visual information. Accordingly, SfM approaches will need to handle this variety of image sources, such as perspective, wide-angle and spherical images. However, this issue has not yet been addressed. Current state of the art techniques are not able to handle heterogeneous images simultaneously. Therefore, we introduce SPHERA, a generalized SfM framework designed for central projection cameras. By adopting the unit sphere as underlying model it is possible to treat single effective viewpoint cameras in a unified way. We validate our framework on synthetic and real datasets. Results show that SPHERA is a powerful framework to support upcoming algorithms and applications on large scale 3D reconstruction.


Structure from Motion Spherical images Multi-view 3D reconstruction Large scale 



The authors would like to thank Richard Schulz for the creation of the synthetic dataset. This work was funded by the project DENSITY (01IW12001).


  1. 1.
    Civetta \(360^o\) Digital Imaging.
  2. 2.
  3. 3.
    Seitz Roundshot.
  4. 4.
  5. 5.
    New House Internet Services BV.
  6. 6.
    Anguelov, D., Dulong, C., Filip, D., Frueh, C., Lafon, S., Lyon, R., Ogale, A., Vincent, L., Weaver, J.: Google street view: capturing the world at street level. Computer 43, 32–38 (2010)CrossRefGoogle Scholar
  7. 7.
    Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: IEEE and ACM International Symposium on Mixed and Augmented Reality. IEEE Computer Society, Washington DC (2007)Google Scholar
  8. 8.
    Newcombe, R.A., Lovegrove, S.J., Davison, A.J.: DTAM: dense tracking and mapping in real-time. In: International Conference on Computer Vision, pp. 2320–2327. IEEE Computer Society, Washington DC (2011)Google Scholar
  9. 9.
    Hiep, V.H., Keriven, R., Labatut, P., Pons, J.-P.: Towards high-resolution large-scale multi-view stereo. In: Computer Vision and Pattern Recognition, pp. 1430–1437. IEEE Computer Society (2009)Google Scholar
  10. 10.
    Furukawa, Y., Curless, B., Seitz, S.M., Szeliski, R.: Towards internet-scale multi-view stereo. In: Computer Vision and Pattern Recognition (2010)Google Scholar
  11. 11.
    Chang, P., Hebert, M.: Omni-directional structure from motion. In: IEEE Workshop on Omnidirectional Vision, pp. 127–133. IEEE Computer Society, Washington (2000)Google Scholar
  12. 12.
    Micusik, B., Pajdla, T.: Structure from motion with wide circular field of view cameras. Trans. Pattern Anal. Mach. Intell. 28, 1135–1149 (2006)CrossRefGoogle Scholar
  13. 13.
    Bagnato, L., Frossard, P., Vandergheynst, P.: A variational framework for structure from motion in omnidirectional image sequences. J. Math. Imag. Vis. 41, 182–193 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kangni, F., Laganiere, R.: Orientation and pose recovery from spherical panoramas. In: IEEE International Conference on Computer Vision, pp. 1–8. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  15. 15.
    Pagani, A., Stricker, D.: Structure from Motion using full spherical panoramic cameras. In: OMNIVIS (2011)Google Scholar
  16. 16.
    Aly, M., Bouguet, J.-Y.: Street view goes indoors: Automatic pose estimation from uncalibrated unordered spherical panoramas. In: Winter Conference on Applications of Computer Vision (2012)Google Scholar
  17. 17.
    Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3D. In: SIGGRAPH, pp. 835–846. ACM, New York (2006)Google Scholar
  18. 18.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  19. 19.
    Ma, Y., Soatto, S., Kosecka, J., Sastry, S.: An Invitation to 3D Vision, from Images to Models. Springer Verlag, New York (2003)zbMATHGoogle Scholar
  20. 20.
    Arie-Nachimson, M., Kovalsky, S.Z., Kemelmacher-Shlizerman, I., Singer, A., Basri, R.: Global motion estimation from point matches. In: 3DIMPVT (2012)Google Scholar
  21. 21.
    Olsson, C., Enqvist, O.: Stable structure from motion for unordered image collections. In: Heyden, A., Kahl, F. (eds.) SCIA 2011. LNCS, vol. 6688, pp. 524–535. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Wu, C.: Towards linear-time incremental structure from motion. In: 3DV (2013)Google Scholar
  23. 23.
    Rodríguez, A.L., López-de-Teruel, P.E., Ruiz, A.: Reduced epipolar cost for accelerated incremental SfM. In: Computer Vision and Pattern Recognition (2011)Google Scholar
  24. 24.
    Triggs, B., Mclauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment: a modern synthesis. In: International Workshop on Vision Algorithms: Theory and Practice, pp. 298–372 (1999)Google Scholar
  25. 25.
    Frahm, J.-M., et al.: Building rome on a cloudless day. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 368–381. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  26. 26.
    Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., Szeliski, R.: Building Rome in a day. In: International Conference on Computer Vision, Kyoto, pp. 72–79 (2009)Google Scholar
  27. 27.
    Geyer, C., Daniilidis, K.: Catadioptric projective geometry. Int. J. Comput. Vis. 43, 223–243 (2001)CrossRefzbMATHGoogle Scholar
  28. 28.
    Strecha, C., Hansen, W., Van-Gool, L., Fua, P., Thoennessen, U.: On benchmarking camera calibration and multi-view stereo for high resolution imagery. In: Computer Vision and Pattern Recognition (2008)Google Scholar
  29. 29.
    Torii, A., Imiya, A., Ohnishi, N.: Two- and three- view geometry for spherical cameras. In: OMNIVIS (2005)Google Scholar
  30. 30.
    Stewénius, H., Engels, C., Nistér, D.: Recent developments on direct relative orientation. J. Photogram. Remote Sens. 60, 284–294 (2006)CrossRefGoogle Scholar
  31. 31.
    Quan, L., Lan, Z.: Linear N-point camera pose determination. Trans. Pattern Anal. Mach. Intell. 21, 774–780 (1999)CrossRefGoogle Scholar
  32. 32.
    Huynh, D.Q.: Metrics for 3D rotations: comparison and analysis. J. Math. Imag. Vis. 35, 155–164 (2009)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Agarwal, S., Mierle, K.: Others: Ceres Solver.
  34. 34.
    Gava, C.C., Hengen, J.M., Tätz, B., Stricker, D.: Keypoint detection and matching on high resolution spherical images. In: International Symposium on Visual Computing, Rethymnon, pp. 363–372 (2013)Google Scholar
  35. 35.
  36. 36.
  37. 37.
    Furukawa, Y., Ponce, J.: Accurate, dense, and robust multi-view stereopsis. Trans. Pattern Anal. Mach. Intell. 32, 1362–1376 (2010)CrossRefGoogle Scholar
  38. 38.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department Augmented VisionGerman Research Center for Artificial IntelligenceKaiserslauternGermany
  2. 2.Department of Computer ScienceKaiserslautern University of TechnologyKaiserslauternGermany

Personalised recommendations