Fully-Automatic Target Detection and Tracking for Real-Time, Airborne Imaging Applications

  • Tunç AlkanatEmail author
  • Emre Tunali
  • Sinan Öz
Part of the Communications in Computer and Information Science book series (CCIS, volume 598)


In this study, an efficient, robust algorithm for automatic target detection and tracking is introduced. Procedure starts with a detection phase. Proposed method uses two alternatives for the detection phase, namely maximally stable extremal regions detector and Canny edge detector. After detection, regions of interest are evaluated and eliminated according to their compactness and effective saliency. The detection process is repeated for a predetermined number of pyramid levels where each level processes a downsampled version of input image to achieve scale invariance. Then, temporal consistency for detections from all scales is evaluated and target likelihood map is constructed using kernel density estimation in order to merge all target hypotheses. Finally, outstanding targets are selected from target likelihood map and tracking is achieved by minimizing spatial distance between the selected targets in consecutive frames.


Real-time target detection Multiple target tracking Temporal consistency Data association Target probability density estimation Adaptive target selection 


  1. 1.
    Berclaz, J., Fleuret, F., Turetken, E., Fua, P.: Multiple object tracking using k-shortest paths optimization. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1806–1819 (2011)CrossRefGoogle Scholar
  2. 2.
    Niedfeldt, P.C., Beard, R.W.: Multiple target tracking using recursive ransac. In: American Control Conference (ACC), pp. 3393–3398. IEEE (2014)Google Scholar
  3. 3.
    Andriyenko, A., Schindler, K.: Multi-target tracking by continuous energy minimization. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1265–1272. IEEE (2011)Google Scholar
  4. 4.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)CrossRefGoogle Scholar
  5. 5.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Comput. Vis. Image Underst. 110, 346–359 (2008)CrossRefGoogle Scholar
  6. 6.
    Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image Vis. Comput. 22, 761–767 (2004)CrossRefGoogle Scholar
  7. 7.
    Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference, UK, Manchesterm, vol. 15, p. 50 (1988)Google Scholar
  8. 8.
    Rosten, E., Drummond, T.W.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986)CrossRefGoogle Scholar
  10. 10.
    Prewitt, J.M.: Object enhancement and extraction. Picture Process. Psychopictorics 10, 15–19 (1970)Google Scholar
  11. 11.
    Sobel, I., Feldman, G.: A 3x3 isotropic gradient operator for image processing. a talk at the Stanford Artificial Project, pp. 271–272 (1968)Google Scholar
  12. 12.
    Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Fluids Eng. 82, 35–45 (1960)Google Scholar
  13. 13.
    Tsai, C., Dutoit, X., Song, K., Van Brussel, H., Nuttin, M.: Robust face tracking control of a mobile robot using self-tuning kalman filter and echo state network. Asian J. Control 12, 488–509 (2010)MathSciNetGoogle Scholar
  14. 14.
    Ramakoti, N., Vinay, A., Jatoth, R.K.: Particle swarm optimization aided kalman filter for object tracking. In: International Conference on Advances in Computing, Control, & Telecommunication Technologies, ACT 2009, pp. 531–533. IEEE (2009)Google Scholar
  15. 15.
    Ristic, B., Arulampalam, S., Gordon, N.: Beyond the Kalman Filter: Particle Filters for Tracking Applications, vol. 685. Artech House, Boston (2004)zbMATHGoogle Scholar
  16. 16.
    Fortmann, T.E., Bar-Shalom, Y., Scheffe, M.: Multi-target tracking using joint probabilistic data association. In: 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes, vol. 19, pp. 807–812. IEEE (1980)Google Scholar
  17. 17.
    Reid, D.B.: An algorithm for tracking multiple targets. IEEE Trans. Autom. Contr. 24, 843–854 (1979)CrossRefGoogle Scholar
  18. 18.
    Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Stat. 33, 1065–1076 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Alkanat, T., Tunalı, E., Öz, S.: A real-time, automatic target detection and tracking method for variable number of targets in airborne imagery. In: Proceedings of the 10th International Conference on Computer Vision Theory and Applications, pp. 61–69 (2015)Google Scholar
  20. 20.
    Zhu, W., Liang, S., Wei, Y., Sun, J.: Saliency optimization from robust background detection. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2814–2821. IEEE (2014)Google Scholar
  21. 21.
    Wei, Y., Wen, F., Zhu, W., Sun, J.: Geodesic saliency using background priors. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 29–42. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  22. 22.
    Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. (CSUR) 38, 13 (2006)CrossRefGoogle Scholar
  23. 23.
    Aytekin, C., Tunalı, E., Öz, S.: Fast semi-automatic target initialization based on visual saliency for airborne thermal imagery. In: Proceedings of the 9th International Conference on Computer Vision Theory and Applications, Visapp 2014, pp. 490–497 (2014)Google Scholar
  24. 24.
  25. 25.
    Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2544–2550 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Microelectronics, Guidance and Electro-Optics DivisionASELSAN Inc.AnkaraTurkey
  2. 2.Department of Electrical and Electronics EngineeringMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations