Skip to main content

Fully-Automatic Target Detection and Tracking for Real-Time, Airborne Imaging Applications

  • Conference paper
Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2015)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 598))

  • 1207 Accesses

Abstract

In this study, an efficient, robust algorithm for automatic target detection and tracking is introduced. Procedure starts with a detection phase. Proposed method uses two alternatives for the detection phase, namely maximally stable extremal regions detector and Canny edge detector. After detection, regions of interest are evaluated and eliminated according to their compactness and effective saliency. The detection process is repeated for a predetermined number of pyramid levels where each level processes a downsampled version of input image to achieve scale invariance. Then, temporal consistency for detections from all scales is evaluated and target likelihood map is constructed using kernel density estimation in order to merge all target hypotheses. Finally, outstanding targets are selected from target likelihood map and tracking is achieved by minimizing spatial distance between the selected targets in consecutive frames.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berclaz, J., Fleuret, F., Turetken, E., Fua, P.: Multiple object tracking using k-shortest paths optimization. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1806–1819 (2011)

    Article  Google Scholar 

  2. Niedfeldt, P.C., Beard, R.W.: Multiple target tracking using recursive ransac. In: American Control Conference (ACC), pp. 3393–3398. IEEE (2014)

    Google Scholar 

  3. Andriyenko, A., Schindler, K.: Multi-target tracking by continuous energy minimization. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1265–1272. IEEE (2011)

    Google Scholar 

  4. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)

    Article  Google Scholar 

  5. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Comput. Vis. Image Underst. 110, 346–359 (2008)

    Article  Google Scholar 

  6. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image Vis. Comput. 22, 761–767 (2004)

    Article  Google Scholar 

  7. Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference, UK, Manchesterm, vol. 15, p. 50 (1988)

    Google Scholar 

  8. Rosten, E., Drummond, T.W.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986)

    Article  Google Scholar 

  10. Prewitt, J.M.: Object enhancement and extraction. Picture Process. Psychopictorics 10, 15–19 (1970)

    Google Scholar 

  11. Sobel, I., Feldman, G.: A 3x3 isotropic gradient operator for image processing. a talk at the Stanford Artificial Project, pp. 271–272 (1968)

    Google Scholar 

  12. Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Fluids Eng. 82, 35–45 (1960)

    Google Scholar 

  13. Tsai, C., Dutoit, X., Song, K., Van Brussel, H., Nuttin, M.: Robust face tracking control of a mobile robot using self-tuning kalman filter and echo state network. Asian J. Control 12, 488–509 (2010)

    MathSciNet  Google Scholar 

  14. Ramakoti, N., Vinay, A., Jatoth, R.K.: Particle swarm optimization aided kalman filter for object tracking. In: International Conference on Advances in Computing, Control, & Telecommunication Technologies, ACT 2009, pp. 531–533. IEEE (2009)

    Google Scholar 

  15. Ristic, B., Arulampalam, S., Gordon, N.: Beyond the Kalman Filter: Particle Filters for Tracking Applications, vol. 685. Artech House, Boston (2004)

    MATH  Google Scholar 

  16. Fortmann, T.E., Bar-Shalom, Y., Scheffe, M.: Multi-target tracking using joint probabilistic data association. In: 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes, vol. 19, pp. 807–812. IEEE (1980)

    Google Scholar 

  17. Reid, D.B.: An algorithm for tracking multiple targets. IEEE Trans. Autom. Contr. 24, 843–854 (1979)

    Article  Google Scholar 

  18. Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Stat. 33, 1065–1076 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  19. Alkanat, T., Tunalı, E., Öz, S.: A real-time, automatic target detection and tracking method for variable number of targets in airborne imagery. In: Proceedings of the 10th International Conference on Computer Vision Theory and Applications, pp. 61–69 (2015)

    Google Scholar 

  20. Zhu, W., Liang, S., Wei, Y., Sun, J.: Saliency optimization from robust background detection. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2814–2821. IEEE (2014)

    Google Scholar 

  21. Wei, Y., Wen, F., Zhu, W., Sun, J.: Geodesic saliency using background priors. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 29–42. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  22. Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. (CSUR) 38, 13 (2006)

    Article  Google Scholar 

  23. Aytekin, C., Tunalı, E., Öz, S.: Fast semi-automatic target initialization based on visual saliency for airborne thermal imagery. In: Proceedings of the 9th International Conference on Computer Vision Theory and Applications, Visapp 2014, pp. 490–497 (2014)

    Google Scholar 

  24. VIVID (2005). http://vision.cse.psu.edu/data/vivideval/datasets/datasets.html

  25. Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2544–2550 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tunç Alkanat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Alkanat, T., Tunali, E., Öz, S. (2016). Fully-Automatic Target Detection and Tracking for Real-Time, Airborne Imaging Applications. In: Braz, J., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2015. Communications in Computer and Information Science, vol 598. Springer, Cham. https://doi.org/10.1007/978-3-319-29971-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29971-6_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29970-9

  • Online ISBN: 978-3-319-29971-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics