Advertisement

A Hybrid Approach for Individual and Group Activity Analysis in Crowded Scene

  • K. N. Tran
  • Xu Yan
  • I. A. Kakadiaris
  • S. K. ShahEmail author
Part of the Communications in Computer and Information Science book series (CCIS, volume 598)

Abstract

This paper presents an efficient hybrid (top-down and bottom-up) framework for activity recognition based on analyzing group context in crowded scenes. The approach presented starts by discovering interacting groups of people using a graph based clustering algorithm. Given the interacting groups, a novel group context activity descriptor is computed that captures not only the focal person’s activity but also the behaviors of neighbors in the group. Finally, for a high-level of understanding of human activities, we propose a bottom-up approach using a random field model to encode activity relationships between people in the scene. We evaluate our approach on two public benchmark datasets and compare the utility of our proposed descriptor with other descriptors using the same baseline recognition framework. The results of both the steps show that our approach with the proposed descriptor achieves recognition rates comparable to state-of-the-art methods for activity recognition in crowded scenes.

Keywords

Activity Recognition Human Activity Recognition Activity Descriptor Activity Label Focal Person 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported in part by the US Department of Justice 2009-MU-MU-K004. Any opinions, findings, conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of our sponsors.

References

  1. 1.
    Ryoo, M., Aggarwal, J.: Stochastic representation and recognition of high-level group activities. Int. J. Comput. Vis. 93, 183–200 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Tran, K.N.: Contextual descriptors for human activity recognition, Ph.D. Thesis, University of Houston (2013)Google Scholar
  3. 3.
    Zhou, B., Tang, X., Wang, X.: Learning collective crowd behaviors with dynamic pedestrian-agents. Int. J. Comput. Vis. 111(1), 50–68 (2015). doi: 10.1007/s11263-014-0735-3CrossRefGoogle Scholar
  4. 4.
    Yi, S., Wang, X., Lu, C., Jia, J.: L0 regularized stationary time estimation for crowd group analysis. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, pp. 2219–2226 (2014). doi: 10.1109/CVPR.2014.284
  5. 5.
    Tran, K., Gala, A., Kakadiaris, I., Shah, S.: Activity analysis in crowded environments using social cues for group discovery and human interaction modeling. Pattern Recogn. Lett. 44, 49–57 (2014). Pattern Recognition and Crowd AnalysisCrossRefGoogle Scholar
  6. 6.
    Smith, K., Ba, S., Odobez, J.-M., Gatica-Perez, D.: Tracking the visual focus of attention for a varying number of wandering people. IEEE Trans. Pattern Anal. Mach. Intell. 30, 1212–1229 (2008)CrossRefGoogle Scholar
  7. 7.
    Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phy. Rev. E 51(5), 4282–4286 (1995)CrossRefGoogle Scholar
  8. 8.
    Cristani, M., Bazzani, L., Paggetti, G., Fossati, A., Tosato, D., Bue, A.D., Menegaz, G., Murino, V.: Social interaction discovery by statistical analysis of f-formations. In: Proceedings of the British Machine Vision Conference, pp. 23.1–23.12 (2011)Google Scholar
  9. 9.
    Tran, K., Yan, X., Kakadiaris, I., Shah, S.: A group contextual model for activity recognition in crowded scenes. In: Proceedings of the International Conference on Computer Vision Theory and Applications (2015)Google Scholar
  10. 10.
    Lan, T., Wang, Y., Yang, W., Robinovitch, S., Mori, G.: Discriminative latent models for recognizing contextual group activities. IEEE Trans. Pattern Anal. Mach. Intell. 34, 1549 (2012)CrossRefGoogle Scholar
  11. 11.
    Choi, W., Shahid, K., Savarese, S.: What are they ng? : collective activity classification using spatio-temporal relationship among people. In: Proceedings Visual Surveillance Workshop, ICCV, pp. 1282–1289 (2009)Google Scholar
  12. 12.
    Choi, W., Shahid, K., Savarese, S.: Learning context for collective activity recognition. In: Proceedings of the Computer Vision and Pattern Recognition, Spring CO, USA, pp. 3273–3280 (2011)Google Scholar
  13. 13.
    Amer, M.R., Todorovic, S.: A chains model for localizing participants of group activities in videos. In: Proceedings of the IEEE International Conference on Computer Vision (2011)Google Scholar
  14. 14.
    Khan, S.M., Shah, M.: Detecting group activities using rigidity of formation. In: Proceedings of the ACM International Conference on Multimedia, MULTIMEDIA 2005, NY, USA, pp. 403–406. ACM, New York (2005). http://doi.acm.org/10.1145/1101149.1101237. doi: 10.1145/1101149.1101237
  15. 15.
    Vaswani, N., Roy Chowdhury, A., Chellappa, R.: Activity recognition using the dynamics of the configuration of interacting objects. In: Proceedings of the Computer Vision and Pattern Recognition, vol. 2, pp. II-633–II-40 (2003). doi: 10.1109/CVPR.2003.1211526
  16. 16.
    Chang, M.-C., Krahnstoever, N., Lim, S., Yu, T.: Group level activity recognition in crowded environments across multiple cameras. In: Proceedings of the IEEE International Conference on Advanced Video and Signal Based Surveillance, DC, USA, pp. 56–63 (2010)Google Scholar
  17. 17.
    Mehran, R., Oyama, A., Shah, M.: Abnormal crowd behavior detection using social force model. In: Proceedings of the Computer Vision and Pattern Recognition, pp. 935–942 (2009). doi: 10.1109/CVPR.2009.5206641
  18. 18.
    Farenzena, M., Tavano, A., Bazzani, L., Tosato, D., Pagetti, G., Menegaz, G., Murino, V., Cristani, M.: Social interaction by visual focus of attention in a three-dimensional environment. In: Proceedings of the Workshop on Pattern Recognition and Artificial Intelligence for Human Behavior Analysis at AI*IA (2009)Google Scholar
  19. 19.
    Farenzena, M., Bazzani, L., Murino, V., Cristani, M.: Towards a subject-centered analysis for automated video surveillance. In: Foggia, P., Sansone, C., Vento, M. (eds.) ICIAP 2009. LNCS, vol. 5716, pp. 481–489. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Lan, T., Sigal, L., Mori, G.: Social roles in hierarchical models for human activity recognition. In: Proceedings of the Computer Vision and Pattern Recognition, pp. 1354–1361 (2012). doi: 10.1109/CVPR.2012.6247821
  21. 21.
    Hoiem, D., Efros, A., Hebert, M.: Putting objects in perspective. In: Proceedings of the Computer Vision and Pattern Recognition, vol. 2, pp. 2137–2144 (2006) doi: 10.1109/CVPR.2006.232
  22. 22.
    Pavan, M., Pelillo, M.: Dominant sets and pairwise clustering. IEEE Trans. Pattern Anal. Mach. Intell. 29, 167–172 (2007)CrossRefGoogle Scholar
  23. 23.
    Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002)CrossRefGoogle Scholar
  24. 24.
    Wang, H., Klaser, A., Schmid, C., Liu, C.-L.: Action recognition by dense trajectories. In: Proceedings of the Computer Vision and Pattern Recognition, pp. 3169–3176 (2011). doi: 10.1109/CVPR.2011.5995407
  25. 25.
    Tran, K., Kakadiaris, I., Shah, S.: Part-based motion descriptor image for human action recognition. Pattern Recogn. 45(7), 2562–2572 (2012)CrossRefGoogle Scholar
  26. 26.
    Amer, M.R., Xie, D., Zhao, M., Todorovic, S., Zhu, S.-C.: Cost-sensitive top-down/bottom-up inference for multiscale activity recognition. In: Proceedings of the European Conference on Computer Vision, pp. 187–200 (2012)Google Scholar
  27. 27.
    Was, J., Gudowski, B., Matuszyk, P.J.: Social distances model of pedestrian dynamics. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 492–501. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  28. 28.
    Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011)CrossRefGoogle Scholar
  29. 29.
    Mooij, J.M.: libDAI: a free and open source C++ library for discrete approximate inference in graphical models. J. Mach. Learn. Res. 11, 2169–2173 (2010)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • K. N. Tran
    • 1
  • Xu Yan
    • 1
  • I. A. Kakadiaris
    • 1
  • S. K. Shah
    • 1
    Email author
  1. 1.Quantitative Imaging Laboratory, Department of Computer ScienceUniversity of HoustonHoustonUSA

Personalised recommendations