Advertisement

Overview of the Sustainable Materials for Composites and Their Industrial Adaptability

  • Taraneh KhademiEmail author
Chapter
  • 624 Downloads

Abstract

Sustainability carries more weight in this century, boosting research and investigations on new environmentally sustainable materials. This paper summarizes some recent literature and developments on the topics of biopolymers, cellulosic fibers, biocomposites and at least their potential as engineering parts and state an overview of natural polymers and the utilization of natural fiber reinforcements to form biodegradable sustainable and on the long view competitive composites. Green Composites are finding adaptabilityin many fields including automotive industry, construction industry, sporting goods, or consumer products. Main types of bioplastics are listed, defined and considered according to their mechanical performance and market potential. Natural plant fibers are classified by origin, performance and potential for composites as well as compared to traditionally used glass fiber according to mechanical properties and environmental impact. Moreover, advantages of cellulose fibers for composites are listed and compared to their downgrades, with possible modification methods to partially compensate their disadvantages.

Keywords

Green Composites Biodegrading Bio polymers Natural plant fibers reinforcement 

References

  1. 1.
    M.A. Islam, B.R. Mills, 3D Woven Structures and Methods of Manufacture. Woven Textiles: Principles, Developments and Applications, pp. 267–273 (2012)Google Scholar
  2. 2.
    A.P. Mouritz, M.K. Bannister, Review of applications for advanced three-dimensional fibre textile composites. Compos. Part A 30, 1445–1461 (1999)Google Scholar
  3. 3.
    M. Milwich, Learning from nature: lightweight constructions using the Textiles plant stem. Polym. Compos. Build. 304 (2010)Google Scholar
  4. 4.
    S.T. Peters, Introduction, Composite Basics and Road Map. in Handbook of Composites, vol. 2 (1998)Google Scholar
  5. 5.
    C. Baley, Matrix polymers. flax and hemp fibres; a natural solution for the composite industry. JEC Compos. vol. 85 (2012)Google Scholar
  6. 6.
    K. Goda, M. Sreekala, S. Malhotra, Advances in polymer composites: biocomposites- state of the art, new challenges and opportunities. Polym. Compos. vol 3 Biocompos. 1–8 (2014)Google Scholar
  7. 7.
    A.K. Mohanty, M. Misra, L.T. Drza, Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J. Polym. Environ. 10, 19–26 (2002)CrossRefGoogle Scholar
  8. 8.
    P. Bordes, E. Pollet, Nano-biocomposites: Biodegradable polyester/nanoclaysystems. Prog. Polym. Sci. 34, 125–155 (2009)CrossRefGoogle Scholar
  9. 9.
    E.D. Maio, S. Iannace, Biodegradable Composites. Encycl. Compos. 1, 86 (2012)Google Scholar
  10. 10.
    W.S. Ratnayakea, R. Hoovera, Composition, molecular structure, and physicochemical properties of starches from four field pea (Pisum sativum L.) cultivars. Food Chem. 74(2), 189–202 (2001)CrossRefGoogle Scholar
  11. 11.
    M. Thunwall, A. Boldizar, M. Rigdahl, Compression molding and tensile properties of thermoplastic potato starch materials. Biomacromolecules. pp. 981–986 (2006)Google Scholar
  12. 12.
    F.G. Torres, O.H. Arroyo, C. Gomez, Processing and mechanical properties of natural fiber reinforced thermoplastic starch biocomposites. J. Thermoplast. Compos. Mater. 20, 207–223 (2007)CrossRefGoogle Scholar
  13. 13.
    A. Vazquez, V.A. Alvarez, Starch- Cellulose Fiber Composite.in Biodegradable polymer Blends and Composites from renewable Resources, vol. 245 (2009)Google Scholar
  14. 14.
    A. Bergeret, Environment-friendly protein-/starch-based biodegradable polymers and composites. JEC Mag. vol. 39 (2008)Google Scholar
  15. 15.
    S. Ochi, Development of high strength biodegradable composites using Manila hemp fiber and starch-based biodegradable resin. Compos. Part A Appl. Sci. Manuf. 37, 7879–1883(2005)Google Scholar
  16. 16.
    X.S. Sun, Overview of plant polymers: resources, demands, and sustainability. Bio- Based Polym. Compos. 382–403 (2005)Google Scholar
  17. 17.
    V.M. Hernandez-Izquierdo, Thermoplastic, processing of proteins for film formation. J Food Sci 73, 30–39 (2008)Google Scholar
  18. 18.
    Y. Wang, G.W. Padua, Tensile properties of extruded zein sheets and extrusion blown films. Macromol. Mater. Eng. 288(11), 886–893 (2003)CrossRefGoogle Scholar
  19. 19.
    J.W. Pollack, Soy vs. petro polyols: A life cycle comparison, pp. 1–5 (2004)Google Scholar
  20. 20.
    J.P. Dwan’Isa, Mohanty A.K. Misra, Biobased polyurethane and its composite with glass fiber. J. Mater. Sci. 39, 2081–2087 (2004)CrossRefGoogle Scholar
  21. 21.
    S. Husic, I. Javni, Thermal and mechanical properties of glass reinforced soybased polyurethane composites. Compos. Sci. Technol. 65, 19–25 (2005). science directCrossRefGoogle Scholar
  22. 22.
    A. Skopinska-Wisniewskaa, Surface characterization of collagen/elastin based biomaterials for tissue regeneration. Appl. Surf. Sci. 255(19), 8286–8292 (2009)Google Scholar
  23. 23.
    P.B. Malafaya, G.A. Silva, Natural–origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv. Drug Delivery Rev. 4–5(59), 207–233 (2007)CrossRefGoogle Scholar
  24. 24.
    U. Gruessner, M. Clemens, Improvement of perineal wound healing by local administration of gentamicin-impregnated collagen fleeces after abdominoperineal excision of rectal cancer. Am. J. Surg. 182(5), 502 (2001)CrossRefGoogle Scholar
  25. 25.
    C. Yang, M. Bodo, Recombinant collagen and gelatin for drug delivery. Adv. Drug Delivery Rev. 55(12), 1547 (2003)CrossRefGoogle Scholar
  26. 26.
    A.C. Albertson, K. VarmaI, Aliphatic Polyester: synthesis, properties, and applications. Adv. Polym. Sci. 2 (2002)Google Scholar
  27. 27.
    C. Jérôme, P. Lecomte, Recent advances in the synthesis of aliphatic polyesters by ring-opening polymerization. Adv. Drug Delivery Rev. 60(9), 1056–1076 (2008)CrossRefGoogle Scholar
  28. 28.
    A. Steinbruch, Polyester 3. Applications and commercial products 4. Biopolymers 338 (2002)Google Scholar
  29. 29.
    L.T. Lim, R. Auras, Processing technologies for poly (lactide acid) in process. Polym. sci. 33(8), 820–852 (2008)Google Scholar
  30. 30.
    A.B. Nair, P. Sivasubramanian, P. Balakrishnan, Environmental effects biodegradation, and life cycle analysis of fully biodegradable “green” composites. Polym. Compos. Biocompos. 515–534 (2012)Google Scholar
  31. 31.
    S.R. Lee, H.M. Park, Microstructure, tensile properties, and biodegradability of aliphatic polyester/clay nanocomposites Polymer 43, 2495–2500 (2002)Google Scholar
  32. 32.
    M, Tolinski, Plastic and sustainability, pp 204–110 (2012)Google Scholar
  33. 33.
    J. Sierra, M. Noriega, E. Cardona, Relationship between properties, citrate content and postproduction time for a plasticized Polylactic acid. in ANTEC 2010 Society of Plastic Engineers (2010)Google Scholar
  34. 34.
    M. Tolinski, Plastic and sustainability, pp. 107–110 (2012)Google Scholar
  35. 35.
    S. Medeiros, A.S.F. Santos, A. Dufresne, Bionanocomposites. Polym. Compos. 3 Biocompos. 375 (2014)Google Scholar
  36. 36.
    E. DI Maio, S. Iannace, Biodegradable composites. Encycl. Compos. 1, 88 (2012)Google Scholar
  37. 37.
  38. 38.
    European bioplastics, Institut für Biokunststoffe und Bioverbundwerkstoffe (IFBB)Google Scholar
  39. 39.
    European Bioplastics, Institute for Bioplastics and Biocomposites, nova-Institute (2015)Google Scholar
  40. 40.
  41. 41.
    E. Bodros, C. Baley, Study of the tensile properties of stinging nettle fibres (Urtica dioica). Mater. Lett. 62(14), 2143–2145 (2008)CrossRefGoogle Scholar
  42. 42.
    A. Bismarmarck, S. Mishra, Plant Fibers as Reinforcement for Green Composites. in Natural Fibers, Biopolymers and Biocomposites (2005)Google Scholar
  43. 43.
    K. Charlet, Natural Fibres as Composite Reinforcement Materials, Description of new source of vegetable Fibers, in Natural Polymers Volume 1: Composites (RSC Publishing, UK, 2012) pp. 48–57Google Scholar
  44. 44.
    P. Wambua, U. Ivens, I. Verpoest, Natural fibers: can they replace glass in fiber reinforced plastics. Compos. Sci. Technol. 63, 1259–1264 (2003)CrossRefGoogle Scholar
  45. 45.
    S.V. Joshi, L.T. Drzal, A.K. Mohnty, Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos. Part A 35, 371–376 (2004)Google Scholar
  46. 46.
    R.M. Rowell, Properties and Performance of Natural-Fibre Composites; Natural Fibres, types and properties. pp. 4–36 (2008)Google Scholar
  47. 47.
    F.G. Torres, Processing and mechanical properties of natural fiber reinforced thermoplastic starch biocomposites. J. Thermoplast. Compos. Mater. 20(2), 207–223 (2007)CrossRefGoogle Scholar
  48. 48.
    I.C. Madufor, M.E. Yibowei, Physico-Mechanical Properties of Luffa aegyptiaca Fiber Reinforced Polymer Matrix Composite, vol. 1 (2015)Google Scholar
  49. 49.
    M. Carus, A. Eder, L. Scholz, BIOVERBUNDWERKSTOFFE Naturfaserverstärkte Kunststoffe (NFK) und Holz-Polymer-Werkstoffe (WPC), Fachagentur Nachwachsende Rohstoffe e. V. (FNR) (2015)Google Scholar
  50. 50.
    P. Gaikwad, P. Mahanwar, Surface treated and untreated henequen fiber reinforced polypropylene composites. Int. J. Chem. Environ. Biol. Sci. (IJCEBS) 2(4) (2014)Google Scholar
  51. 51.
    H. Hajiha, M. Sain, The use of sugarcane bagasse fibres as reinforcements in composites. in Biofiber Reinforcements in Composite Materials ed by O. Faruk, M. Sain (Woodhead Publishing, UK, 2015) pp. 525–547Google Scholar
  52. 52.
    Zaker Bahreini, Evaluation of calotropis gigantea as a promising raw material for fiber-reinforced composite. J. Compos. Mater. June 2009. 43(11), 1297–1304Google Scholar
  53. 53.
    L. Garzon, L.M. Lopez, J. Fajardo: New Natural Fiber: Toquilla Straw a Potential Reinforcement in Thermoplastic Polymer Composites. in Conference: ICMS 2014, http://icams.ro/index.php, vol. 5. Available on research gate (2014)
  54. 54.
    R. Mahjoub, J. Bin Mohamad Yatim, A review of structural performance of oil palm empty fruit bunch fiber in polymer composites. Adv. Mater. Sci. Eng. 2013 (2013)Google Scholar
  55. 55.
    M. Zimniewska, J. Mankowski, Cellulosic Bast Fibers, Their Structures and Properties Suitable for Composite Applications. in Cellulose Fibers: Bio-and Nano- Polymer Composites, pp. 108–112 (2011)Google Scholar
  56. 56.
    A.K. Mohanty, M. Misra, L.T. Drzal, Surface modifications of natural fibers and performance of the resulting biocomposites: An overview. Compos. Interfaces 8, 313–343 (2001)CrossRefGoogle Scholar
  57. 57.
    G.T. Pott, Reduction of Moisture Sensitivity in Natural Fibres. in Advanced Fibers, Plastics, Laminates and Composites, pp. 87–98 (2002)Google Scholar
  58. 58.
    J.M. Jacob, T. Sabu, Biofibres and biocomposites. Carbohydr. Polym. 71 (2008), p. 344. www.sciencedirect.com (2007)
  59. 59.
    A. Vazquez, V.A. Alvarez, Starch-Cellulose Fiber Composites. in Biodegradable Polymer Blends and Composites From Renewable Resources, vol. 250 (2009)Google Scholar
  60. 60.
    M.S. Sreekala, M.G. Kumaran, Effect of chemical modifications on the mechanical performance of oil palm fiber reinforced phenol formaldehyde composites. Nat. polym. compos. (2000)Google Scholar
  61. 61.
    A.K. Bledzki, A.A. Mamun, A. Jaszkiewicz, K. Erdmann, Polypropylene composites with enzyme modified abaca fibre. Compos. Sci. Technol. 70, 854–860 (2010)CrossRefGoogle Scholar
  62. 62.
    G.K. Satyanarayana, G. Arizaga, F. Wypych, Biodegradable composites based on lignocellulosic fibers: An overview. Progress Polym. Sci. 34, 997 (2009)CrossRefGoogle Scholar
  63. 63.
    C. Baley, A.L. Duigou Eco-design, life cycle analysis and recycling. Flax and Hemp fibres: a natural solution for the composite industry. JEC Compos. 174 (2012)Google Scholar
  64. 64.
    Popular Mechanics Magazine. in Auto Body Made of Plastics Resists Denting Under Hard Blows. 76(6) (1941)Google Scholar
  65. 65.
  66. 66.
  67. 67.
  68. 68.
  69. 69.
  70. 70.
  71. 71.
    P. Malnati, ECO Elise Concept: Lean, Speedy and Green. http://www.compositesworld.com/articles/eco-elise-concept-lean-speedy-and-green (2009)
  72. 72.
  73. 73.
    J.M. Yatim, A.R.M. Sam, Construct Build Mater 55, 103–113 (2014)CrossRefGoogle Scholar
  74. 74.
  75. 75.
  76. 76.
  77. 77.
  78. 78.
  79. 79.
  80. 80.
  81. 81.
  82. 82.
  83. 83.
  84. 84.

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Research Institute for Textile and Clothing (FTB), Hochschule Niederrhein—University of Applied SciencesMönchengladbachGermany

Personalised recommendations