Skip to main content

Pt-Containing Heterogeneous Nanomaterials for Methanol Oxidation and Oxygen Reduction Reactions

  • Chapter
  • First Online:
Nanomaterials for Fuel Cell Catalysis

Part of the book series: Nanostructure Science and Technology ((NST))

  • 1935 Accesses

Abstract

Heterogeneously nanostructured materials usually exhibit enhanced catalytic properties in comparison with each one of the constituent materials due to the synergistic effect among their different domains. In this chapter, we review recent development and our experimental investigations on Pt-containing nanomaterials with heterogeneous structures, e.g., core-shell, hollow interiors, stellated/dendritic morpholoies, dimeric, or composite construction, and their catalytic property toward direct methanol fuel cell reactions, including methanol oxidation reaction and oxygen reduction reaction in acidic conditions. A number of characterization techniques, including transmission electron microscopy (TEM), high-resolution TEM (HRTEM), high-angle annular dark-field scanning TEM (HAADF-STEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and energy-dispersive X-ray spectroscopy (EDX) are used to characterize the as-prepared heterogeneous nanomaterials, and to address the following critical issues: (i) the morphology and structure of the heterogeneous nanomaterials; (ii) the mechanism accounting for the morphological/structural formation of the final heterogeneous products; (iii) the influence of the coupling effect among different chemical components on the catalytic property of the heterogeneous nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antolini E (2003) Formation of carbon-supported PtM alloys for low temperature fuel cells: a review. Mater Chem Phys 78:563–573

    Article  CAS  Google Scholar 

  2. Liu H, Song C, Zhang L, Zhang J, Wang H, Wilkinson DP (2006) A review of anode catalysis in the direct methanol fuel cell. J Power Sources 155:95–110

    Article  CAS  Google Scholar 

  3. Steele BCH, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414:345–352

    Article  CAS  Google Scholar 

  4. Perry ML, Fuller TF (2002) A historical perspective of fuel cell technology in the 20th century. J Electrochem Soc 149:S59–S67

    Article  CAS  Google Scholar 

  5. Chen J, Lim B, Lee EP, Xia Y (2009) Shape controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications. Nano Today 4:81–95

    Article  CAS  Google Scholar 

  6. Peng Z, Yang H (2009) Designer platinum nanoparticles: control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today 4:143–164

    Article  CAS  Google Scholar 

  7. Parsons R, VanderNoot T (1988) The oxidation of small organic molecules: a survey of recent fuel cell related research. J Electroanal Chem 257:9–45

    Article  CAS  Google Scholar 

  8. Antolini E, Lopes T, Gonzalez ER (2008) An overview of platinum-based catalysts as methanol-resistant oxygen reduction materials for direct methanol fuel cells. J Alloys Compd 461:253–262

    Article  CAS  Google Scholar 

  9. Marković NM, Ross PN (2002) Surface science studies of model fuel cells electrocatalysts. Surf Sci Rep 45:117–229

    Article  Google Scholar 

  10. de Brujin FA, Dam VAT, Janssen GJM (2008) Review: durability and degradation issues of PEM fuel cell components. Fuel Cells 8:3–22

    Article  CAS  Google Scholar 

  11. Chen W, Kim J, Sun S, Chen S (2008) Electrocatalytic reduction of oxygen by FePt alloy nanoparticles. J Phys Chem C 112:3891–3898

    Article  CAS  Google Scholar 

  12. Wang C, Daimon H, Onodera T, Koda T, Sun S (2008) A general approach to the size- and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen. Angew Chem Int Ed 47:3588–3591

    Article  CAS  Google Scholar 

  13. Kang Y, Murray CB (2010) Synthesis and electrocatalytic properties of cubic Mn-Pt nanocrystals (nanocubes). J Am Chem Soc 132:7568–7569

    Article  CAS  Google Scholar 

  14. Chen A, Holt-Hindle P (2010) Platinum-based nanostructured materials: synthesis, properties, and applications. Chem Rev 110:3767–3804

    Article  CAS  Google Scholar 

  15. Cozzoli PD, Pellegrino T, Manna L (2006) Synthesis, properties and perspectives of hybrid nanocrystal structures. Chem Soc Rev 35:1195–1208

    Article  CAS  Google Scholar 

  16. Zhang J, Sasaki K, Adzic RR (2007) Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 315:220–222

    Article  CAS  Google Scholar 

  17. Zhang L-F, Zhong S-L, Xu A-W (2013) Highly branched concave Au/Pd bimetallic nanocrystals with superior electrocatalytic activity and highly efficient SERS enhancement. Angew Chem Int Ed 52:645–649

    Article  CAS  Google Scholar 

  18. Murray CB, Kagan CR, Bawendi MG (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci 30:545–610

    Article  CAS  Google Scholar 

  19. Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  20. Bruda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Article  CAS  Google Scholar 

  21. Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108:845–910

    Article  CAS  Google Scholar 

  22. Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    Article  CAS  Google Scholar 

  23. Murray RW (2008) Nanoelectrochemistry: metal nanoparticles, nanoelectrodes, and nanopores. Chem Rev 108:2688–2720

    Article  CAS  Google Scholar 

  24. Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48:60–103

    Article  CAS  Google Scholar 

  25. Novet T, Johnson DC (1991) New synthetic approach to extended solids: selective synthesis of iron suicides via the amorphous state. J Am Chem Soc 113:3398–3403

    Article  CAS  Google Scholar 

  26. Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46:1–184

    Article  CAS  Google Scholar 

  27. Mazumder V, Chi M, More KL, Sun S (2010) Core/shell Pd/FePt nanoparticles as an active and durable catalyst for the oxygen reduction reaction. J Am Chem Soc 132:7848–7849

    Article  CAS  Google Scholar 

  28. Yang H (2011) Platinum-based electrocatalysts with core–shell nanostructures. Angew Chem Int Ed 50:2674–2676

    Article  CAS  Google Scholar 

  29. Wang A, Peng Q, Li Y (2011) Rod-shaped Au–Pd core–shell nanostructures. Chem Mater 23:3217–3222

    Article  CAS  Google Scholar 

  30. Weber MJ, Mackus AJM, Verheijen MA, van der Marel C, Kessels WMM (2012) Supported core/shell bimetallic nanoparticles synthesis by atomic layer deposition. Chem Mater 24:2973–2977

    Article  CAS  Google Scholar 

  31. Cardinal MF, Mongin D, Crut A, Maioli P, Rodríguez-González B, Pérez-Juste J, Liz-Marzán LM, Fatti ND, Vallée F (2012) Acoustic vibrations in bimetallic Au@Pd core–shell nanorods. J Phys Chem Lett 3:613–619

    Article  CAS  Google Scholar 

  32. Chen T-Y, Luo T-JM, Yang Y-W, Wei Y-C, Wang K-W, Lin T-L, Wen T-C, Lee CH (2012) Core dominated surface activity of core–shell nanocatalysts on methanol electrooxidation. J Phys Chem C 116:16969–16978

    Article  CAS  Google Scholar 

  33. Kuttiyiel KA, Sasaki K, Choi Y, Su D, Liu P, Adzic RR (2012) Nitride stabilized PtNi core–shell nanocatalyst for high oxygen reduction activity. Nano Lett 12:6266–6271

    Article  CAS  Google Scholar 

  34. Zhang Q, Lee I, Joo JB, Zaera F, Yin Y (2013) Core–shell nanostructured catalysts. Acc Chem Res 46:1816–1824

    Article  CAS  Google Scholar 

  35. Kang SW, Lee YW, Park Y, Choi B-S, Hong JW, Park K-H, Han SW (2013) One-pot synthesis of trimetallic Au@PdPt core–shell nanoparticles with high catalytic performance. ACS Nano 7:7945–7955

    Article  CAS  Google Scholar 

  36. Sun X, Li D, Ding Y, Zhu W, Guo S, Wang ZL, Sun S (2014) Core/shell Au/CuPt nanoparticles and their dual electrocatalysis for both reduction and oxidation reactions. J Am Chem Soc 136:5745–5749

    Article  CAS  Google Scholar 

  37. Tedsree K, Li T, Jones S, Chan CWA, Yu KMK, Bagot PAJ, Marquis EA, Smith GDW, Tsang SCE (2011) Hydrogen production from formic acid decomposition at room temperature using a Ag–Pd core–shell nanocatalyst. Nat Nanotechnol 6:302–307

    Article  CAS  Google Scholar 

  38. Alayoglu S, Nilekar AU, Mavrikakis M, Eichhorn B (2008) Ru–Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat Mater 7:333–338

    Article  CAS  Google Scholar 

  39. Serpell CJ, Cookson J, Ozkaya D, Beer PD (2011) Core@shell bimetallic nanoparticle synthesis via anion coordination. Nat Chem 3:478–483

    CAS  Google Scholar 

  40. Turkevich J, Kim G (1970) Palladium: preparation and catalytic properties of particles of uniform size. Science 169:873–879

    Article  CAS  Google Scholar 

  41. Paz-Borbon LO, Mortimer-Jones TV, Johnston RL, Posada-Amarillas A, Barcaro G, Fortunelli A (2007) Structures and energetics of 98 atom Pd–Pt nanoalloys: potential stability of the Leary tetrahedron for bimetallic nanoparticles. Phys Chem Chem Phys 9:5202–5208

    Article  CAS  Google Scholar 

  42. Wang C, van der Vliet D, More KL, Zaluzec NJ, Peng S, Sun S, Daimon H, Wang G, Greeley J, Pearson J, Paulikas AP, Karapetrov G, Strmcnik D, Markovic NM, Stamenkovic VR (2011) Multimetallic Au/FePt3 nanoparticles as highly durable electrocatalyst. Nano Lett 11:919–926

    Article  CAS  Google Scholar 

  43. Narayanan R, El-Sayed MA (2004) Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Lett 4:1343–1348

    Article  CAS  Google Scholar 

  44. Habas SE, Lee H, Radmilovic V, Somorjai GA, Yang P (2007) Shaping binary metal nanocrystals through epitaxial seeded growth. Nat Mater 6:692–697

    Article  CAS  Google Scholar 

  45. Wang C, Daimon H, Lee Y, Kim J, Sun S (2007) Synthesis of monodisperse Pt nanocubes and their enhanced catalysis for oxygen reduction. J Am Chem Soc 129:6974–6975

    Article  CAS  Google Scholar 

  46. Narayanan R, El-Sayed MA (2004) Changing catalytic activity during colloidal platinum nanocatalysis due to shape changes: Electron-transfer reaction. J Am Chem Soc 126:7194–7195

    Article  CAS  Google Scholar 

  47. Tian N, Zhou Z, Sun S, Ding Y, Wang ZL (2007) Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316:732–735

    Article  CAS  Google Scholar 

  48. Li C, Sato R, Kanehara M, Zeng HB, Bando Y, Teranishi T (2009) Controllable polyol synthesis of uniform palladium icosahedra: effect of twinned structure on deformation of crystalline lattices. Angew Chem Int Ed 48:6883–6887

    Article  CAS  Google Scholar 

  49. Wang JX, Inada H, Wu L, Zhu Y, Choi Y, Liu P, Zhou WP, Adzic RR (2009) Oxygen reduction on well-defined core-shell nanocatalysts: particle size, facet, and Pt shell thickness effects. J Am Chem Soc 131:17298–17302

    Article  CAS  Google Scholar 

  50. Tang Y, Ouyang M (2007) Tailoring properties and functionalities of metal nanoparticles through crystallinity engineering. Nat Mater 6:754–759

    Article  CAS  Google Scholar 

  51. Zhang Q, Xie J, Yang J, Lee JY (2009) Monodisperse icosahedral Ag, Au, and Pd nanoparticles: size control strategy and superlattice formation. ACS Nano 3:139–148

    Article  CAS  Google Scholar 

  52. Yang J, Yang J, Ying JY (2012) Morphology and lateral strain control of Pt nanoparticles via core–shell construction using alloy AgPd core toward oxygen reduction reaction. ACS Nano 6:9373–9382

    Article  CAS  Google Scholar 

  53. Zhang Q, Lee JY, Yang J, Boothroyd C, Zhang JX (2007) Size and composition tunable Ag–Au alloy nanoparticles by replacement reactions. Nanotechnology 18:245605

    Article  CAS  Google Scholar 

  54. Reyes-Gasga J, Tehuacanero-Nunez S, Montejano-Carrizales JM, Gao XX, Jose-Yacaman M (2007) Analysis of the contrast in icosahedral gold nanoparticles. Top Catal 46:23–30

    Article  CAS  Google Scholar 

  55. Ling T, Xie L, Zhu J, Yu HM, Ye HQ, Yu R, Cheng Z, Liu L, Yang GW, Cheng ZD, Wang YJ, Ma XL (2009) Icosahedral face-centered cubic Fe nanoparticles: facile synthesis and characterization with aberration-corrected TEM. Nano Lett 9:1572–1576

    Article  CAS  Google Scholar 

  56. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B 56:9–35

    Article  CAS  Google Scholar 

  57. Markovic N, Gasteiger H, Ross PN (1997) Kinetics of oxygen reduction on Pt(hkl) electrodes: implications for the crystallite size effect with supported Pt electrocatalysts. J Electrochem Soc 144:1591–1597

    Article  CAS  Google Scholar 

  58. Li HQ, Xin Q, Li WZ, Zhou ZH, Jiang LH, Yang SH, Sun GQ (2004) An improved palladium-based DMFCs cathode catalyst. Chem Commun 23:2776–2777

    Article  CAS  Google Scholar 

  59. Hayre RO, Cha SW, Colella W, Prinz FB (2006) Fuel cell fundamentals. Wiley, New York

    Google Scholar 

  60. Bligaard T, Norskov JK (2007) Ligand effects in heterogeneous catalysis and electrochemistry. Electrochim Acta 52:5512–5516

    Article  CAS  Google Scholar 

  61. Xu Y, Ruba AV, Mavrikakis M (2004) Adsorption and dissociation of O2 on Pt-Co and Pt-Fe alloys. J Am Chem Soc 126:4717–4725

    Article  CAS  Google Scholar 

  62. Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJJ, Lucas CA, Wang GF, Ross PN, Markovic NM (2007) Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat Mater 6:241–247

    Article  CAS  Google Scholar 

  63. Stamenkovic VR, Fowler B, Mun BS, Wang GF, Ross PN, Lucas CA, Markovic NM (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315:493–497

    Article  CAS  Google Scholar 

  64. Ataee-Esfahani H, Wang L, Nemoto Y, Yamauchi Y (2010) Synthesis of bimetallic Au@Pt nanoparticles with Au core and nanostructured Pt shell toward highly active electrocatalysts. Chem Mater 22:6310–6318

    Article  CAS  Google Scholar 

  65. Liang H, Zhang H, Hu J, Guo Y, Wan L, Bai C (2004) Pt hollow nanospheres: facile synthesis and enhanced electrocatalysts. Angew Chem Int Ed 43:1540–1543

    Article  CAS  Google Scholar 

  66. Yang J, Lee JY, Too H-P, Valiyaveettil S (2006) A bis(p-sulfonatophenyl)phenyl-phosphine-based synthesis of hollow Pt nanospheres. J Phys Chem B 110:125–129

    Article  CAS  Google Scholar 

  67. Chen G, Xia D, Nie Z, Wang Z, Wang L, Zhang L, Zhang J (2007) Facile synthesis of Co–Pt hollow sphere electrocatalyst. Chem Mater 19:1840–1844

    Article  CAS  Google Scholar 

  68. Chen HM, Liu RS, Lo MY, Chang SC, Tsai LD, Peng YM, Lee JF (2008) Hollow platinum spheres with nano-channels: synthesis and enhanced catalysis for oxygen reduction. J Phys Chem C 112:7522–7526

    Article  CAS  Google Scholar 

  69. Guo S, Dong S, Wang E (2008) A general method for the rapid synthesis of hollow metallic or bimetallic nanoelectrocatalysts with urchinlike morphology. Chem Eur J 14:4689–4695

    Article  CAS  Google Scholar 

  70. Xu C, Wang L, Wang R, Wang K, Zhang Y, Tian F, Ding Y (2009) Nanotubular mesoporous bimetallic nanostructures with enhanced electrocatalytic performance. Adv Mater 21:2165–2169

    Article  CAS  Google Scholar 

  71. Yang J, Sargent EH, Kelley SO, Ying JY (2009) A general phase-transfer protocol for metal ions and its application in nanocrystal synthesis. Nat Mater 8:683–689

    Article  CAS  Google Scholar 

  72. Peng Z, Wu J, Yang H (2010) Synthesis and oxygen reduction electrocatalytic property of platinum hollow and platinum-on-silver nanoparticles. Chem Mater 22:1098–1106

    Article  CAS  Google Scholar 

  73. Lee J, Park JC, Song H (2008) A nanoreactor framework of a Au@SiO2 yolk/shell structure for catalytic reduction of p-nitrophenol. Adv Mater 20:1523–1528

    Article  CAS  Google Scholar 

  74. Gough DV, Wolosiuk A, Braun PV (2009) Mesoporous ZnS nanorattles: programmed size selected access to encapsulated enzymes. Nano Lett 9:1994–1998

    Article  CAS  Google Scholar 

  75. Liu J, Qiao SZ, Hartono SB, Lu GQ (2010) Monodisperse yolk-shell nanoparticles with a hierarchical porous structure for delivery vehicles and nanoreactors. Angew Chem Int Ed 49:4981–4985

    Article  CAS  Google Scholar 

  76. Gao J, Liang G, Zhang B, Kuang Y, Zhang X, Xu B (2007) FePt@CoS2 yolk-shell nanocrystals as a potent agent to kill hela cells. J Am Chem Soc 129:1428–1433

    Article  CAS  Google Scholar 

  77. Zhao W, Chen H, Li Y, Li L, Lang M, Shi J (2008) Uniform rattle-type hollow magnetic mesoporous spheres as drug delivery carries and their sustained-release property. Adv Funct Mater 18:2780–2788

    Article  CAS  Google Scholar 

  78. Zhu Y, Ikoma T, Hanagata N, Kaskel S (2010) Rattle-type Fe3O4@SiO2 hollow mesoporous spheres as carrier for drug delivery. Small 6:471–478

    Article  CAS  Google Scholar 

  79. Zhang W-M, Hu J-S, Guo Y-G, Zheng S-F, Zhong L-S, Song W-G, Wan L-J (2008) Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv Mater 20:1160–1165

    Article  CAS  Google Scholar 

  80. Lou XW, Li CM, Archer LA (2009) Designed synthesis of coaxial SnO2@carbon hollow nanospheres for highly reversible lithium storage. Adv Mater 21:2536–2539

    Article  CAS  Google Scholar 

  81. Chen JS, Li CM, Zhou WW, Yan QY, Archer LA, Lou XW (2009) One-pot formation of SnO2 hollow nanospheres and α-Fe2O3@SnO2 nanorattles with large void space and their lithium storage properties. Nanoscale 1:280–285

    Article  CAS  Google Scholar 

  82. Chem JS, Luan D, Li CM, Boey FYC, Qiao S, Lou XW (2010) TiO2 and SnO2@TiO2 hollow spheres assembled from anatase TiO2 nanosheets with enhanced lithium storage properties. Chem Commun 46:8252–8254

    Article  CAS  Google Scholar 

  83. Chen JS, Wang Z, Dong XC, Chen P, Lou XW (2011) Graphene-wrapped TiO2 hollow structures with enhanced lithium storage capabilities. Nanoscale 3:2158–2161

    Article  CAS  Google Scholar 

  84. Li H, Bian Z, Zhu J, Zhang D, Li G, Huo Y, Li H, Lu Y (2007) Mesoporous titania spheres with tunable chamber structure and enhanced photocatalytic activity. J Am Chem Soc 129:8406–8407

    Article  CAS  Google Scholar 

  85. Benabid F, Couny F, Knight JC, Birks TA, Russell PJ (2005) Compact, stable and efficient all-fibre gas cells using hollow-core phoyonic crystal fibres. Nature 434:488–491

    Article  CAS  Google Scholar 

  86. Kamata K, Lu Y, Xia Y (2003) Synthesis and characterization of monodispersed core-shell spherical colloids with movable cores. J Am Chem Soc 125:2384–2385

    Article  CAS  Google Scholar 

  87. Bai F, Sun Z, Wu H, Haddad RE, Xiao X, Fan H (2011) Templated photocatalytic synthesis of well-defined platinum hollow nanostructures with enhanced catalytic performance for methanol oxidation. Nano Lett 11:3759–3762

    Article  CAS  Google Scholar 

  88. Caruso F, Caruso RA, Möhwald H (1998) Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282:1111–1114

    Article  CAS  Google Scholar 

  89. Caruso F, Shi X, Caruso RA, Susha A (2001) Hollow titania spheres from layered precursor deposition on sacrificial colloidal core particles. Adv Mater 13:740–744

    Article  CAS  Google Scholar 

  90. Yang Z, Niu Z, Lu Y, Hu Z, Han CC (2003) Templated synthesis of inorganic hollow spheres with a tunable cavity size onto core-shell gel particles. Angew Chem Int Ed 42:1943–1945

    Article  CAS  Google Scholar 

  91. Lou XW, Yuan C, Archer LA (2007) Shell-by-shell synthesis of tin oxide hollow colloids with nanoarchitectured walls: cavity size tuning and functionalization. Small 3:261–265

    Article  CAS  Google Scholar 

  92. Wang Z, Luan D, Boey FYC, Lou XW (2011) Fast formation of SnO2 nanoboxes with enhanced lithium storage capability. J Am Chem Soc 133:4738–4741

    Article  CAS  Google Scholar 

  93. Lai X, Li J, Korgel BA, Dong Z, Li Z, Su F, Du J, Wang D (2011) General synthesis and gas-sensing properties of multiple-shell metal oxide hollow microspheres. Angew Chem Int Ed 50:2738–2741

    Article  CAS  Google Scholar 

  94. Schmidt HT, Ostafin AE (2002) Liposome directed growth of calcium phosphate nanoshells. Adv Mater 14:532–535

    Article  CAS  Google Scholar 

  95. Hubert DHW, Jung M, German AL (2000) Vesicle templating. Adv Mater 12:1291–1294

    Article  CAS  Google Scholar 

  96. Gao X, Zhang J, Zhang L (2002) Hollow sphere selenium nanoparticles: their in-vitro anti hydroxyl radical effect. Adv Mater 14:290–293

    Article  CAS  Google Scholar 

  97. Nakashima T, Kimizuka N (2003) Interfacial synthesis of hollow TiO2 microspheres in ionic liquids. J Am Chem Soc 125:6386–6387

    Article  CAS  Google Scholar 

  98. Qi L, Li J, Ma J (2002) Biomimetic morphogenesis of calcium carbonate in mixed solutions if surfactants and double-hydrophilic block copolymers. Adv Mater 14:300–303

    Article  CAS  Google Scholar 

  99. Zhang D, Qi L, Ma J, Cheng H (2002) Synthesis of submicrometer-sized hollow silver spheres in mixed polymer-surfactant solutions. Adv Mater 14:1499–1502

    Article  CAS  Google Scholar 

  100. Wong MS, Cha JN, Choi K-S, Deming TJ, Stucky GD (2002) Assembly of nanoparticles into hollow spheres using block copolypeptides. Nano Lett 2:583–587

    Article  CAS  Google Scholar 

  101. Lou XW, Archer LA, Yang Z (2008) Hollow micro-/nanostructures: synthesis and applications. Adv Mater 20:3987–4019

    Article  CAS  Google Scholar 

  102. Zhao Y, Jiang L (2009) Hollow micro/nanomaterials with multilevel interior structures. Adv Mater 21:3621–3638

    Article  CAS  Google Scholar 

  103. Sun Y, Mayers BT, Xia Y (2002) Template-engaged replacement reaction: a one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors. Nano Lett 2:481–485

    Article  CAS  Google Scholar 

  104. Sun Y, Xia Y (2004) Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J Am Chem Soc 126:3892–3901

    Article  CAS  Google Scholar 

  105. Chen J, Wiley B, McLellan J, Xiong Y, Li Z-Y, Xia Y (2005) Optical properties of Pd-Ag and Pt-Ag nanoboxes synthesized via galvanic replacement reactions. Nano Lett 5:2058–2062

    Article  CAS  Google Scholar 

  106. Chen M, Gao L (2006) Synthesis and characterization of Ag nanoshells by a facile sacrificial template route through in situ replacement reaction. Inorg Chem 45:5145–5149

    Article  CAS  Google Scholar 

  107. Skrabalak SE, Chen J, Sun Y, Lu X, Au L, Cobley CM, Xia Y (2008) Gold nanocages: synthesis, properties, and applications. Acc Chem Res 41:1587–1595

    Article  CAS  Google Scholar 

  108. Zhang H, Jin M, Wang J, Li W, Camargo PHC, Kim MJ, Yang D, Xie Z, Xia Y (2011) Synthesis of Pd-Pt bimetallic nanocrystals with a concave structure through a bromide-induced galvanic replacement reaction. J Am Chem Soc 133:6078–6089

    Article  CAS  Google Scholar 

  109. Mohl M, Dobo D, Kukovecz A, Konya Z, Kordas K, Wei J, Vajtai R, Ajayan PM (2011) Formation of CuPd and CuPt bimetallic nanotubes by galvanic replacement reaction. J Phys Chem C 115:9403–9409

    Article  CAS  Google Scholar 

  110. González E, Arbiol J, Puntes VF (2011) Carving at the nanoscale: sequential galvanic exchange and Kirkendall growth at room temperature. Science 334:1377–1380

    Article  CAS  Google Scholar 

  111. Yin Y, Rioux RM, Erdonmez CK, Hughes S, Somorjai GA, Alivisatos PA (2004) Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304:711–714

    Article  CAS  Google Scholar 

  112. Zeng HC (2006) Synthetic architecture of interior space for inorganic nanostructures. J Mater Chem 16:649–662

    Article  CAS  Google Scholar 

  113. Zeng HC (2007) Ostwald ripening: a synthetic approach for hollow nanomaterials. Curr Nanosci 3:177–181

    Article  CAS  Google Scholar 

  114. Caruso F (2000) Hollow capsule processing through colloidal templating and self-assembly. Chem Eur J 6:413–419

    Article  CAS  Google Scholar 

  115. Macdonald JE, Sadan MB, Houben L, Popov I, Banin U (2010) Hybrid nanoscale inorganic cages. Nat Mater 9:810–815

    Article  CAS  Google Scholar 

  116. Chen C, Kang Y, Huo Z, Zhu Z, Huang W, Xin HL, Snyder JD, Li D, Herron JA, Mavrikakis M, Chi M, More KL, Li Y, Markovic NM, Somorjai GA, Yang P, Stamenkovic VR (2014) Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343:1339–1343

    Article  CAS  Google Scholar 

  117. Wu X-J, Xu D (2009) Formation of yolk/SiO2 shell structure using surfactant mixtures as template. J Am Chem Soc 131:2774–2775

    Article  CAS  Google Scholar 

  118. Li G, Shi Q, Yuan SJ, Neoh KG, Kang ET, Yang X (2010) Alternating silica/polymer multilayer hybrid microspheres templates for double-shelled polymer and inorganic hollow microstructures. Chem Mater 22:1309–1317

    Article  CAS  Google Scholar 

  119. Liu H, Qu J, Chen Y, Li J, Ye F, Lee JY, Yang J (2012) Hollow and cage-bell structured nanomaterials of noble metals. J Am Chem Soc 134:11602–11610

    Article  CAS  Google Scholar 

  120. Wiley B, Herricks T, Sun Y, Xia Y (2004) Polyol synthesis of silver nanoparticles: use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Lett 4:1733–1739

    Article  CAS  Google Scholar 

  121. Tan Y-N, Yang J, Lee JY, Wang DIC (2007) Mechanistic study on the Bis(p-sulfonatophenyl)-phenylphosphine synthesis of monometallic Pt hollow nanoboxes using Ag*-Pt core-shell nanocubes as sacrificial templates. J Phys Chem C 111:14084–14090

    Article  CAS  Google Scholar 

  122. Gasteiger HA, Markovic N, Ross PN, Cairns EJ (1993) Methanol electrooxidation on well-characterized platinum-ruthenium bulk alloys. J Phys Chem 97:12020–12029

    Article  CAS  Google Scholar 

  123. Wang JM, Brankovic SR, Zhu Y, Hanson JC, Adzic RR (2003) Kinetic characterization of PtRu fuel cell anode catalysts made by spontaneous Pt deposition on Ru nanoparticles. J Electrochem Soc 150:A1108–A1117

    Article  CAS  Google Scholar 

  124. Antolini E, Salgado JRC, Gonzalez ER (2005) Carbon supported Pt75M25 (M = Co, Ni) alloys as anode and cathode electrocatalysts for direct methanol fuel cells. J Electroanal Chem 580:145–154

    Article  CAS  Google Scholar 

  125. Liu H, Ye F, Yang J (2014) A universal and cost-effective approach to the synthesis of carbon-supported noble metal nanoparticles with hollow interiors. Ind Eng Chem Res 53:5925–5931

    Article  CAS  Google Scholar 

  126. Wang L, Yamauchi Y (2013) Metallic nanocages: synthesis of bimetallic Pt–Pd hollow nanoparticles with dendritic shells by selective chemical etching. J Am Chem Soc 135:16762–16765

    Article  CAS  Google Scholar 

  127. Bagotzky VS, Vassiliev YB, Khazova OA (1977) Generalized scheme of chemisorption, electrooxidation and electroreduction of simple organic-compounds on platinum group metals. J Electroanal Chem 81:229–238

    Article  Google Scholar 

  128. Goodenough JB, Hamnett A, Kennedy BJ, Manoharan R, Weeks SA (1990) Porous carbon anodes for the direct methanol fuel-cell. 1. The role of the reduction method for carbon supported platinum electrodes. Electrochim Acta 35:199–207

    Article  CAS  Google Scholar 

  129. Jusys Z, Schmidt TJ, Dubau L, Lasch K, Jorissen L, Garche J, Behm RJ (2002) Activity of PtRuMeox (Me = W, Mo or V) catalysts towards methanol oxidation and their characterization. J Power Sources 105:297–304

    Article  CAS  Google Scholar 

  130. Park KW, Choi JH, Ahn KS, Sung YE (2004) PtRu alloy and PtRu-WO3 nanocomposite electrodes for methanol electrooxidation fabricated by a sputtering deposition method. J Phys Chem B 108:5989–5994

    Article  CAS  Google Scholar 

  131. Park KW, Sung YE, Han S, Yan Y, Hyeon T (2004) Origin of the enhanced catalytic activity of carbon nanocoil-supported PtRu alloy electrocatalysts. J Phys Chem B 108:939–944

    Article  CAS  Google Scholar 

  132. Park KW, Choi JH, Lee SA, Pak C, Chang H, Sung YE (2004) PtRuRhNi nanoparticle electrocatalyst for methanol electrooxidation in direct methanol fuel cell. J Catal 224:236–242

    Article  CAS  Google Scholar 

  133. Huang J, Yang H, Huang Q, Tang Y, Lu T, Akins DL (2004) Methanol oxidation on carbon-supported Pt-Os bimetallic nanoparticle electrocatalysts. J Electrochem Soc 151:A1810–A1815

    Article  CAS  Google Scholar 

  134. Ye F, Yang J, Hu W, Liu H, Liao S, Zeng J, Yang J (2012) Electrostatic interaction based hollow Pt and Ru assemblies toward methanol oxidation. RSC Adv 2:7479–7486

    Article  CAS  Google Scholar 

  135. Rolison DR, Hagans PL, Swider KE, Long JW (1999) Role of hydrous ruthenium oxide in Pt–Ru direct methanol fuel cell anode electrocatalysts: the importance of mixed electron/proton conductivity. Langmuir 15:774–779

    Article  CAS  Google Scholar 

  136. Long JW, Stroud RM, Swider KE, Rolison DB (2000) How to make electrocatalysts more active for direct methanol oxidation—avoid PtRu bimetallic alloys! J Phys Chem B 104:9772–9776

    Article  CAS  Google Scholar 

  137. Villullas HM, Mattos-Costa FI, Bulhőes LOS (2004) Electrochemical oxidation of methanol on Pt nanoparticles dispersed on RuO2. J Phys Chem B 108:12898–12903

    Article  CAS  Google Scholar 

  138. Chen Z, Qiu X, Lu B, Zhang S, Zhu W, Chen L (2005) Synthesis of hydrous ruthenium oxide supported platinum catalysts for direct methanol fuel cells. Electrochem Commun 7:593–596

    Article  CAS  Google Scholar 

  139. Scheiba F, Scholz M, Cao L, Schafranek R, Roth C, Cremers C, Qiu X, Stimming U, Fuess H (2006) On the suitability of hydrous ruthenium oxide supports to enhance intrinsic proton conductivity in DMFC anodes. Fuel Cells 6:439–446

    Article  CAS  Google Scholar 

  140. Cao L, Scheiba F, Roth C, Schweiger F, Cremers C, Stimming U, Fuess H, Chen L, Zhu W, Qiu X (2006) Novel nanocomposite Pt/RuO2 · xH2O/carbon nanotube catalysts for direct methanol fuel cells. Angew Chem Int Ed 45:5315–5319

    Article  CAS  Google Scholar 

  141. Profeti LPR, Simőes FC, Olivi P, Kokoh KB, Coutanceau C, Léger J-M, Lamy C (2006) Application of Pt + RuO2 catalysts prepared by thermal decomposition of polymeric precursors to DMFC. J Power Sources 158:1195–1201

    Article  CAS  Google Scholar 

  142. Huang S-Y, Chang C-M, Wang K-W, Yeh C-T (2007) Promotion of platinum-ruthenium catalyst for electrooxidation of methanol by crystalline ruthenium dioxide. ChemPhysChem 8:1774–1777

    Article  CAS  Google Scholar 

  143. Peng F, Zhou C, Wang H, Yu H, Liang J, Yang J (2009) The role of RuO2 in the electrocatalytic oxidation of methanol for direct methanol fuel cell. Catal Commun 10:533–537

    Article  CAS  Google Scholar 

  144. Dubau L, Hahn F, Coutanceau C, Léger J-M, Lamy C (2003) On the structure effects of bimetallic PtRu electrocatalysts towards methanol oxidation. J Electroanal Chem 554–555:407–415

    Article  CAS  Google Scholar 

  145. Beard KD, Borrelli D, Cramer AM, Blom D, Van Zee JW, Monnier JR (2009) Preparation and structural analysis of carbon-supported Co core/Pt shell electrocatalysts using electroless deposition methods. ACS Nano 3:2841–2853

    Article  CAS  Google Scholar 

  146. Langille MR, Zhang J, Mirkin CA (2011) Plasmon-mediated synthesis of heterometallic nanorods and icosahedra. Angew Chem Int Ed 50:3543–3547

    Article  CAS  Google Scholar 

  147. Zhou S, Mcllwrath K, Jackson G, Eichhorn B (2006) Enhanced CO tolerance for hydrogen activation in Au-Pt dendritic heteroaggregate nanostructures. J Am Chem Soc 128:1780–1781

    Article  CAS  Google Scholar 

  148. Lee H, Habas SE, Somorjai GA, Yang P (2008) Localized Pd overgrowth on cubic Pt nanocrystals for enhanced electrocatalytic oxidation of formic acid. J Am Chem Soc 130:5406–5407

    Article  CAS  Google Scholar 

  149. Peng Z, Yang H (2009) PtAu bimetallic heteronanostructures made by post-synthesis modification of Pt-on-Au nanoparticles. Nano Res 2:406–415

    Article  CAS  Google Scholar 

  150. Lim B, Kobayashi H, Yu T, Wang J, Kim MJ, Li Z-Y, Rycenga M, Xia Y (2010) Synthesis of Pd-Au bimetallic nanocrystals via controlled overgrowth. J Am Chem Soc 132:2506–2507

    Article  CAS  Google Scholar 

  151. Wang F, Li C, Sun L-D, Wu H, Ming T, Wang J, Yu JC, Yan C-H (2011) Heteroepitaxial growth of high-index-faceted palladium nanoshells and their catalytic performance. J Am Chem Soc 133:1106–1111

    Article  CAS  Google Scholar 

  152. Fan F-R, Liu D-Y, Wu Y-F, Duan S, Xie Z-X, Jiang Z-Y, Tian Z-Q (2008) Epitaxial growth of heterogeneous metal nanocrystals: From gold nano-octahedra to palladium and silver nanocubes. J Am Chem Soc 130:6949–6951

    Article  CAS  Google Scholar 

  153. Zeng J, Zhu C, Tao J, Jin M, Zhang H, Li Z-Y, Zhu Y, Xia Y (2012) Controlling the nucleation and growth of silver on palladium nanocubes by manipulating the reaction kinetics. Angew Chem Int Ed 51:2354–2358

    Article  CAS  Google Scholar 

  154. Lim B, Jiang M, Camargo PHC, Cho EC, Tao J, Lu X, Zhu Y, Xia Y (2009) Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324:1302–1305

    Article  CAS  Google Scholar 

  155. Peng Z, Yang H (2009) Synthesis and oxygen reduction electrocatalytic property of Pt-on-Pd bimetallic heteronanostructures. J Am Chem Soc 131:7542–7543

    Article  CAS  Google Scholar 

  156. Guo S, Dong S, Wang E (2010) Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: Facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. ACS Nano 4:547–555

    Article  CAS  Google Scholar 

  157. Wang L, Nemoto Y, Yamauchi Y (2011) Direct synthesis of spatially-controlled Pt-on-Pd bimetallic nanodendrites with superior electrocatalytic activity. J Am Chem Soc 133:9674–9677

    Article  CAS  Google Scholar 

  158. Kim Y, Hong JW, Lee YW, Kim M, Kim D, Yun WS, Han SW (2010) Synthesis of AuPt heteronanostructures with enhanced electrocatalytic activity toward oxygen reduction. Angew Chem Int Ed 49:10197–10201

    Article  CAS  Google Scholar 

  159. Wang L, Yamauchi Y (2009) Block copolymer mediated synthesis of dendritic platinum nanoparticles. J Am Chem Soc 131:9152–9153

    Article  CAS  Google Scholar 

  160. Liu H, Ye F, Yao Q, Cao H, Xie J, Lee JY, Yang J (2014) Stellated Ag-Pt bimetallic nanoparticles: an effective platform for catalytic activity tuning. Sci Rep 4:3969

    Google Scholar 

  161. Wang ZL (2000) Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J Phys Chem B 104:1153–1175

    Article  CAS  Google Scholar 

  162. Brodersen SH, Grønbjerg U, Hvolbæk B, Schiøtz J (2011) Understanding the catalytic activity of gold nanoparticles through multi-scale simulations. J Catal 284:34–41

    Article  CAS  Google Scholar 

  163. Feng Y, Liu H, Yang J (2014) Bimetallic nanodendrites via selective overgrowth of noble metals on multiply twinned Au seeds. J Mater Chem A 2:6130–6137

    Article  CAS  Google Scholar 

  164. Mourdikoudis S, Liz-Marzán LM (2013) Oleylamine in nanoparticle synthesis. Chem Mater 25:1465–1476

    Article  CAS  Google Scholar 

  165. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thoil-derivatised gold nanoparticle in a two-phase Liquid-Liqiud synthem. J Chem Soc Chem Commun 7:801–802

    Google Scholar 

  166. Hiramatsu H, Osterloh F (2004) A simple large-scale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants. Chem Mater 16:2509–2511

    Article  CAS  Google Scholar 

  167. Aslam M, Fu L, Su M, Vijayamohanan K, Dravid VP (2004) Novel one-step synthesis of amine-stabilized aqueous colloidal gold nanoparticles. J Mater Chem 14:1795–1797

    Article  CAS  Google Scholar 

  168. Yu H, Chen M, Rice PM, Wang SX, White RL, Sun S (2005) Dumbbell-like bifunctional Au–Fe3O4 nanoparticles. Nano Lett 5:379–382

    Article  CAS  Google Scholar 

  169. Wang C, Hou Y, Kim J, Sun S (2007) A general strategy for synthesizing FePt nanowires and nanorods. Angew Chem Int Ed 46:6333–6335

    Article  CAS  Google Scholar 

  170. Peng S, Sun S (2007) Synthesis and characterization of monodisperse hollow Fe3O4 nanoparticles. Angew Chem Int Ed 46:4155–4158

    Article  CAS  Google Scholar 

  171. Chaubey GS, Barcena C, Poudyal N, Rong C, Gao J, Sun S, Liu JP (2007) Synthesis and stabilization of FeCo nanoparticles. J Am Chem Soc 129:7214–7215

    Article  CAS  Google Scholar 

  172. Kim J, Rong C, Lee Y, Liu JP, Sun S (2008) From core/shell structured FePt/Fe3O4/MgO to ferromagnetic FePt nanoparticles. Chem Mater 20:7242–7245

    Article  CAS  Google Scholar 

  173. Zeng H, Sun S (2008) Syntheses, properties and potential applications of multicomponent magnetic nanoparticles. Adv Funct Mater 18:391–400

    Article  CAS  Google Scholar 

  174. Lu X, Tuan H-Y, Korgel BA, Xia Y (2008) Facile synthesis of gold nanoparticles with narrow size distribution by using AuCl or AuBr as the precursor. Chem Eur J 14:1584–1591

    Article  CAS  Google Scholar 

  175. Xu Z, Shen C, Hou Y, Gao H, Sun S (2009) Oleylamine as both reducing agent and stabilizer in a facile synthesis of magnetite nanoparticles. Chem Mater 21:1778–1780

    Article  CAS  Google Scholar 

  176. Kim J, Rong C, Liu P, Sun S (2009) Dispersible ferromagnetic FePt nanoparticles. Adv Mater 21:906–909

    Article  CAS  Google Scholar 

  177. Wang C, Peng S, Lacroix L-M, Sun S (2009) Synthesis of high magnetic moment CoFe nanoparticles via interfacial diffusion in core/shell structured Co/Fe nanoparticles. Nano Res 2:380–385

    Article  CAS  Google Scholar 

  178. Lacroix L-M, Huls NF, Ho D, Sun X, Cheng K, Sun S (2011) Stable single-crystalline body centered cubic Fe nanoparticles. Nano Lett 11:1641–1645

    Article  CAS  Google Scholar 

  179. Liu X, Atwater M, Wang J, Dai Q, Zou J, Brennan JP, Huo Q (2007) A study on gold nanoparticle synthesis using oleylamine as both reducing agent and protecting ligand. J Nanosci Nanotechnol 7:3126–3133

    Article  CAS  Google Scholar 

  180. Feng Y, Ma X, Han L, Peng Z, Yang J (2014) A universal approach to the synthesis of nanodendrites of noble metals. Nanoscale 6:6173–6179

    Article  CAS  Google Scholar 

  181. Ostwald WF (1897) Studien uber die bildung und umwandlung fester korper. Z Phys Chem 22:289–330

    CAS  Google Scholar 

  182. Liu RX, Iddir H, Fan QB, Hou GY, Bo AL, Ley KL, Smotkin ES, Sung YE, Kim H, Thomas S (2000) Potential-dependent infrared absorption spectroscopy of adsorbed CO and X-ray photoelectron spectroscopy of arc-melted single-phase Pt, PtRu, PtOs, PtRuOs, and Ru electrodes. J Phys Chem B 104:3518–3531

    Article  CAS  Google Scholar 

  183. Jiang J, Kucernak A (2009) Electrodeposition of highly alloyed quaternary PtPdRuOs catalyst with highly ordered nanostructure. Electrochem Commun 11:1005–1008

    Article  CAS  Google Scholar 

  184. Ley KL, Liu RX, Pu C, Fan QB, Leyarovska N, Segre C, Smotkin ES (1997) Methanol oxidation on single-phase Pt-Ru-Os ternary alloys. J Electrochem Soc 144:1543–1548

    Article  CAS  Google Scholar 

  185. Watanabe M, Motoo S (1975) Electrocatalysis by ad-atoms. 2. Enhancement of oxidation of methanol on platinum by ruthenium ad-atoms. J Electroanal Chem 60:267–273

    Article  CAS  Google Scholar 

  186. Watanabe M, Motoo S (1975) Electrocatalysis by ad-atoms. 3. Enhancement of oxidation of carbon-monoxide on platinum by ruthenium ad-atoms. J Electroanal Chem 60:275–283

    Article  CAS  Google Scholar 

  187. Pellegrino T, Fiore A, Carlino E, Giannini C, Cozzoli PD, Ciccarella G, Respaud M, Palmirotta L, Cingolani R, Manna L (2006) Heterodimers based on CoPt3-Au nanocrystals with tunable domain size. J Am Chem Soc 128:6690–6698

    Article  CAS  Google Scholar 

  188. Choi J-S, Choi HJ, Jung DC, Lee J-H, Cheon J (2008) Nanoparticle assisted magnetic resonance imaging of the early reversible stages of amyloid β self-assembly. Chem Commun 19:2197–2199

    Article  CAS  Google Scholar 

  189. Wang C, Tian W, Ding Y, Ma Y-Q, Wang ZL, Markovic NM, Stamenkovic VR, Daimon H, Sun S (2010) Rational synthesis of heterostructured nanoparticles with morphology control. J Am Chem Soc 132:6524–6529

    Article  CAS  Google Scholar 

  190. Bai L, Kuang Y, Luo J, Evans DG, Sun X (2012) Ligand-manipulated selective transformations of Au-Ni bimetallic heteronanostructures in an organic medium. Chem Commun 48:6963–6965

    Article  CAS  Google Scholar 

  191. Lim SI, Varon M, Ojea-Jiménez I, Arbiol J, Puntes V (2011) Pt nanocrystal evolution in the presence of Au(III)-salts at room temperature: spontaneous formation of AuPt heterodimers. J Mater Chem 21:11518–11523

    Article  CAS  Google Scholar 

  192. Yang J, Lee JY, Chen LX, Too H-P (2005) A phase-transfer identification of core-shell structures in Ag-Pt nanoparticles. J Phys Chem B 109:5468–5472

    Article  CAS  Google Scholar 

  193. Luo J, Wang L, Mott D, Njoki PN, Lin Y, He T, Xu Z, Wanjala BN, Lim IS, Zhong C (2008) Core/shell nanoparticles as electrocatalysts for fuel cell reactions. Adv Mater 20:4342–4347

    Article  CAS  Google Scholar 

  194. Zhou W-P, Yang X, Vukmirovic MB, Koel BE, Jiao J, Peng G, Mavrikakis M, Adzic RR (2009) Improving electrocatalysts for O2 reduction by fine-tuning the Pt–support interaction: Pt monolayer on the surfaces of a Pd3Fe(111) single-crystal alloy. J Am Chem Soc 131:12755–12762

    Article  CAS  Google Scholar 

  195. Yang J, Chen X, Yang X, Ying JY (2012) Stabilization and compressive strain effect of AuCu core on Pt shell for oxygen reduction reaction. Energy Environ Sci 5:8976–8981

    Article  CAS  Google Scholar 

  196. Liu H, Yang J (2014) Bimetallic Ag–hollow Pt heterodimers via insideout migration of Ag in core–shell Ag–Pt nanoparticles at elevated temperature. J Mater Chem A 2:7075–7081

    Article  CAS  Google Scholar 

  197. Zhang J, Vukmirovic MB, Sasaki K, Nilekar AU, Mavrikakis M, Adzic RR (2005) Mixed-metal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics. J Am Chem Soc 127:12480–12481

    Article  CAS  Google Scholar 

  198. Zhang J, Vukmirovic MB, Xu Y, Mavrikakis M, Adzic RR (2005) Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew Chem Int Ed 44:2132–2135

    Article  CAS  Google Scholar 

  199. Mokari T, Rothenberg E, Popov I, Costi R, Banin U (2004) Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science 304:1787–1790

    Article  CAS  Google Scholar 

  200. Shi WL, Zeng H, Sahoo Y, Ohulchanskyy TY, Ding Y, Wang ZL, Swihart M, Prasad PN (2006) A general approach to binary and ternary hybrid nanocrystals. Nano Lett 6:875–881

    Article  CAS  Google Scholar 

  201. Yang J, Levina L, Sargent EH, Kelley SO (2006) Heterogeneous deposition of noble metals on semiconductor nanoparticles in organic or aqueous solvents. J Mater Chem 16:4025–4028

    Article  CAS  Google Scholar 

  202. Costi R, Saunders AE, Elmalem E, Salant A, Banin U (2008) Visible light-induced charge retention and photocatalysis with hybrid CdSe-Au nanodumbbells. Nano Lett 8:637–641

    Article  CAS  Google Scholar 

  203. Elmalem E, Saunders AE, Costi R, Salant A, Banin U (2008) Growth of photocatalytic CdSe-Pt nanorods and nanonets. Adv Mater 20:4312–4317

    Article  CAS  Google Scholar 

  204. Habas SE, Yang P, Mokari T (2008) Selective growth of metal and binary metal tips on CdS nanorods. J Am Chem Soc 130:3294–3295

    Article  CAS  Google Scholar 

  205. Yang J, Ying JY (2009) Room-temperature synthesis of nanocrystalline Ag2S and its nanocomposites with gold. Chem Commun 22:3187–3189

    Article  CAS  Google Scholar 

  206. Yang J, Ying JY (2010) Diffusion of gold from the inner core to the surface of Ag2S nanocrystals. J Am Chem Soc 132:2114–2115

    Article  CAS  Google Scholar 

  207. Zhang J, Tang Y, Lee K, Ouyang M (2010) Tailoring light–matter–spin interactions in colloidal hetero-nanostructures. Nature 466:91–95

    Article  CAS  Google Scholar 

  208. Zhang J, Tang Y, Lee K, Ouyang M (2010) Nonepitaxial growth of hybrid core-shell nanostructures with large lattice mismatches. Science 327:1634–1638

    Article  CAS  Google Scholar 

  209. Zhao N, Li L, Huang T, Qi L (2010) Controlled synthesis of PbS-Au nanostar-nanoparticle heterodimers and cap-like Au nanoparticles. Nanoscale 2:2418–2423

    Article  CAS  Google Scholar 

  210. Carbone L, Cozzoli PD (2010) Colloidal heterostructured nanocrystals: Synthesis and growth mechanisms. Nano Today 5:449–493

    Article  CAS  Google Scholar 

  211. Li M, Yu X-F, Liang S, Peng X-N, Yang Z-J, Wang Y-L, Wang Q-Q (2011) Synthesis of Au-CdS core-shell hetero-nanorods with efficient exciton-plasmon interactions. Adv Funct Mater 21:1788–1794

    Article  CAS  Google Scholar 

  212. Qu J, Liu H, Wei Y, Wu X, Yue R, Chen Y, Yang J (2011) Coalescence of Ag2S and Au nanocrystals at room temperature. J Mater Chem 21:11750–11753

    Article  CAS  Google Scholar 

  213. Yang J, Ying JY (2011) Nanocomposites of Ag2S and noble metals. Angew Chem Int Ed 50:4637–4643

    Article  CAS  Google Scholar 

  214. Yang J, Chen X, Ye F, Wang C, Zheng Y, Yang J (2011) Core-shell CdSe@Pt nanocomposites with superior electrocatalytic activity enhanced by lateral strain effect. J Mater Chem 21:9088–9094

    Article  CAS  Google Scholar 

  215. Hu W, Liu H, Ye F, Ding Y, Yang J (2012) A facile solution route for the synthesis of PbSe–Au nanocomposites with different morphologies. CrystEngComm 14:7049–7054

    Article  CAS  Google Scholar 

  216. Haldar KK, Sinha G, Lahtinen J, Patra A (2012) Hybrid colloidal Au-CdSe pentapod heterostructures synthesis and their photocatalytic properties. ACS Appl Mater Interfaces 4:6266–6272

    Article  CAS  Google Scholar 

  217. Ding X, Zou Y, Jiang J (2012) Au-Cu2S heterodimer formation via oxidation of AuCu alloy nanoparticles and in situ formed copper thiolate. J Mater Chem 22:23169–23174

    Article  CAS  Google Scholar 

  218. Motl NE, Bondi JF, Schaak RE (2012) Synthesis of colloidal Au-Cu2S heterodimers via chemically triggered phase segregation of AuCu nanoparticles. Chem Mater 24:1552–1554

    Article  CAS  Google Scholar 

  219. Vinokurov K, Macdonald JE, Banin U (2012) Structures and mechanisms in the growth of hybrid Ru–Cu2S nanoparticles: from cages to nanonets. Chem Mater 24:1822–1827

    Article  CAS  Google Scholar 

  220. Wang D, Li X, Li H, Li L, Hong X, Peng Q, Li Y (2013) Semiconductor–noble metal hybrid nanomaterials with controlled structures. J Mater Chem A 1:1587–1590

    Article  CAS  Google Scholar 

  221. Ding X, Zou Y, Ye F, Yang J, Jiang J (2013) Pt–CuS heterodimers by sulfidation of CuPt alloy nanoparticles and their selective catalytic activity toward methanol oxidation. J Mater Chem A 1:11880–11886

    Article  CAS  Google Scholar 

  222. Sitt A, Hadar I, Banin U (2013) Band-gap engineering, optoelectronic properties and applications of colloidal heterostructured semiconductor nanorods. Nano Today 8:494–513

    Article  CAS  Google Scholar 

  223. Zhao Q, Ji M, Qian H, Dai B, Weng L, Gui J, Zhang J, Ouyang M, Zhu H (2014) Controlling structural symmetry of a hybrid nanostructure and its effect on efficient photocatalytic hydrogen evolution. Adv Mater 26:1387–1392

    Article  CAS  Google Scholar 

  224. Vinokurov K, Bekenstein Y, Gutkin V, Popov I, Millo O, Banin U (2014) Rhodium growth on Cu2S nanocrystals yielding hybrid nanoscale inorganic cages and their synergistic properties. CrystEngComm 16:9506–9512

    Article  CAS  Google Scholar 

  225. Banin U, Ben-Shahar Y, Vinokurov K (2014) Hybrid semiconductor–metal nanoparticles: from architecture to function. Chem Mater 26:97–110

    Article  CAS  Google Scholar 

  226. Kraeutler B, Bard AJ (1978) Heterogeneous photocatalytic synthesis of methane from acetic acid-new Kolbe reaction pathway. J Am Chem Soc 100:4317–4318

    Article  CAS  Google Scholar 

  227. Baba R, Nakabayashi S, Fujishima A, Kenichi H (1985) Investigation of the mechanism of hydrogen ecolution during photocatalytic water decomposition on metal-loaded semiconductor powders. J Phys Chem 89:1902–1905

    Article  CAS  Google Scholar 

  228. Pastoriza-Santos I, Koktysh DS, Mamedov AA, Giersig M, Kotov NA, Liz-Marzan LM (2000) One-pot synthesis of Ag@TiO2 core-shell nanoparticles and their layer-by-layer assembly. Langmuir 16:2731–2735

    Article  CAS  Google Scholar 

  229. Chandrasekharan N, Kamat PV, Hu JQ, Jones G (2000) Improving the photoelectrochemical performance of nanostructured TiO2 films by adsorption of gold nanoparticles. J Phys Chem B 104:10851–10857

    Article  CAS  Google Scholar 

  230. Subramanian V, Wolf E, Kamat PV (2001) Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films? J Phys Chem B 105:11439–11446

    Article  CAS  Google Scholar 

  231. Kamat PV (2002) Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J Phys Chem B 106:7729–7744

    Article  CAS  Google Scholar 

  232. Hirakawa T, Kamat PV (2005) Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under UV-irradiation. J Am Chem Soc 127:3928–3934

    Article  CAS  Google Scholar 

  233. Jakob M, Levanon H, Kamat PV (2003) Charge distribution between UV-irradiated TiO2 and gold nanoparticles: determination of shift in the Fermi level. Nano Lett 3:353–358

    Article  CAS  Google Scholar 

  234. Subramanian V, Wolf E, Kamat PV (2004) Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. J Am Chem Soc 126:4943–4950

    Article  CAS  Google Scholar 

  235. Mokari T, Sztrum CG, Salant A, Rabani E, Banin U (2005) Formation of asymmetric one-side metal-tipped semiconductor nanocrystal dots and rods. Nat Mater 4:855–863

    Article  CAS  Google Scholar 

  236. Saunders AE, Popov I, Banin U (2006) Synthesis of hybrid CdS-Au colloidal nanostructures. J Phys Chem B 110:25421–25429

    Article  CAS  Google Scholar 

  237. Mokari T, Aharoni A, Popov I, Banin U (2006) Diffusion of gold into InAsnanocrystals. Angew Chem Int Ed 45:8001–8005

    Article  CAS  Google Scholar 

  238. Yang J, Elim HI, Zhang Q, Lee JY, Ji W (2006) Rational synthesis, self-assembly, and optical properties of PbS-Au heterogeneous nanostructures via preferential deposition. J Am Chem Soc 128:11921–11926

    Google Scholar 

  239. Talapin DV, Yu H, Shevchenko EV, Lobo A, Murray CB (2007) Synthesis of colloidal PbSe/PbS core-shell nanowires and PbS/Au nanowire-nanocrystal heterostructures. J Phys Chem C 111:14049–14054

    Article  CAS  Google Scholar 

  240. Menagen G, Mocatta D, Salant A, Popov I, Dorfs D, Banin U (2008) Selective gold growth on CdSe seeded CdS nanorods. Chem Mater 20:6900–6902

    Article  CAS  Google Scholar 

  241. Huang SS, Huang JM, Yang JA, Peng JJ, Zhang QB, Peng F, Wang HJ, Yu H (2010) Chemical synthesis, structure characterization, and optical properties of hollow PbSx-solid Au heterodimer nanostructures. Chem Eur J 16:5920–5926

    Article  CAS  Google Scholar 

  242. Yang J, Lee JY, Ying JY (2011) Phase transfer and its applications in nanotechnology. Chem Soc Rev 40:1672–1679

    Article  CAS  Google Scholar 

  243. Liu H, Ye F, Ma X, Cao H, Yang J (2013) The growth of metal sulfide–Au/Ag nanocomposites in a nonpolar organic solvent. CrystEngComm 15:7740–7747

    Article  CAS  Google Scholar 

  244. Dukovic G, Merkle MG, Nelson JH, Hughes SM, Alivisatos AP (2008) Photodeposition of Pt on colloidal CdS and CdSe/CdS semiconductor nanostructures. Adv Mater 20:4306–4311

    Article  CAS  Google Scholar 

  245. Harbour JR, Wolkow R, Hair ML (1981) Effect of platinization on the photoproperties of CdS pigments in dispersion. Determination by H2 evolution, O2 uptake, and electron spin resonance spectroscopy. J Phys Chem 85:4026–4029

    Article  CAS  Google Scholar 

  246. Reber J-F, Rusek M (1986) Photochemical hydrogen production with platinized suspensions of cadmium sulfide and cadmium zinc sulfide modified by silver sulfide. J Phys Chem 90:824–834

    Article  CAS  Google Scholar 

  247. Frank AJ, Goren Z, Willner I (1986) Photohydrogenation of acetylene and ethylene by Pt and Rh supported on CdS semiconductor particles. J Chem Soc Chem Commun 15:1029–1030

    Google Scholar 

  248. Peng XG, Manna L, Yang WD, Wickham J, Scher E, Kadavanich A, Alivisatos AP (2000) Shape control of CdSe nanocrystals. Nature 404:59–61

    Article  CAS  Google Scholar 

  249. Salant A, Amitay-Sadovsky E, Banin U (2006) Direct self-assembly of gold-tipped CdSe nanorods. J Am Chem Soc 128:10006–10007

    Article  CAS  Google Scholar 

  250. Wang X, Zhuang J, Peng Q, Li Y (2005) A general strategy for nanocrystal synthesis. Nature 437:121–124

    Article  CAS  Google Scholar 

  251. Shi H, Fu X, Zhou X, Hu Z (2006) Preparation of organic fluids with high loading concentration of Ag2S nanoparticles using the extractant Cyanex301. J Mater Chem 16:2097–2101

    Article  CAS  Google Scholar 

  252. Motte L, Pileni MP (1998) Influence of length of alkyl chains used to passivate silver sulfide nanoparticles on two- and three-dimensional self-organization. J Phys Chem B 102:4104–4109

    Article  CAS  Google Scholar 

  253. Gao F, Lu Q, Zhao D (2003) Controllable assembly of ordered semiconductor Ag2S nanostructures. Nano Lett 3:85–88

    Article  CAS  Google Scholar 

  254. Liu J, Raveendran P, Shervani Z, Ikushima Y (2004) Synthesis of Ag2S quantum dots in water-in-CO2 microemulsions. Chem Commun 2582–2583Please provide the volume number for Ref. [254]. This journal has no volume number.

    Google Scholar 

  255. Wang X, Liu W, Hao J, Fu X, Xu B (2005) A simple large-scale synthesis of well-defined silver sulfide semiconductor nanoparticles with adjustable sizes. Chem Lett 34:1664–1665

    Article  Google Scholar 

  256. Gao F, Lu Q, Komarneni S (2005) Interface reaction for the self-assembly of silver nanocrystals under microwave-assisted solvothermal conditions. Chem Mater 17:856–860

    Article  CAS  Google Scholar 

  257. Brelle MC, Zhang JZ, Nguyen L, Mehra RK (1999) Synthesis and ultrafast study of cysteine- and glutathione-capped Ag2S semiconductor colloidal nanoparticles. J Phys Chem A 103:10194–10201

    Article  CAS  Google Scholar 

  258. Yang L, Xing R, Shen Q, Jiang K, Ye F, Wang J, Ren Q (2006) Fabrication of protein-conjugated silver sulfide nanorods in the bovine serum albumin solution. J Phys Chem B 110:10534–10539

    Article  CAS  Google Scholar 

  259. Mo X, Krebs MP, Yu SM (2006) Directed synthesis and assembly of nanoparticles using purple membrane. Small 2:526–529

    Article  CAS  Google Scholar 

  260. Lee JS, Shevchenko EV, Talapin DV (2008) Au-PbS core-shell nanocrystals: plasmonic absorption enhancement and electrical doping via intra-particle charge transfer. J Am Chem Soc 130:9673–9675

    Article  CAS  Google Scholar 

  261. Michaelson HB (1977) The work function of the elements and its periodicity. J Appl Phys 48:4729–4733

    Article  CAS  Google Scholar 

  262. Yeager E (1984) Electrocatalysts for O2 reduction. Electrochim Acta 29:1527–1537

    Article  CAS  Google Scholar 

  263. Aricò AS, Srinivasan S, Antonucci V (2001) DMFCs: from fundamental aspects to technology development. Fuel Cells 1:133–161

    Article  Google Scholar 

  264. Toda I, Igarashi H, Uchida H, Watanabe M (1999) Enhancement of the electroreduction of oxygen on Pt alloys with Fe Ni and Co. J Electrochem Soc 146:3750–3756

    Article  CAS  Google Scholar 

  265. Xu C, Goodman DW (1996) Adsorption and reaction of formic acid on a pseudomorphic palladium monolayer on Mo(110). J Phys Chem 100:245–252

    Article  CAS  Google Scholar 

  266. Baldauf M, Kolb DM (1996) Formic acid oxidation on ultrathin Pd films on Au(hkl) and Pt(hkl) electrodes. J Phys Chem 100:11375–11381

    Article  CAS  Google Scholar 

  267. Kibler LA, Kolb DM (2003) Physical electrochemistry: recent developments. Z Phys Chem 217:1265–1280

    Article  CAS  Google Scholar 

  268. Kibler LA, El-Aziz AM, Hoyer R, Kolb DM (2005) Tuning reaction rates by lateral strain in a palladium monolayer. Angew Chem Int Ed 44:2080–2084

    Article  CAS  Google Scholar 

  269. Kumar S, Zou S (2007) Electrooxidation of carbon monoxide and methanol on platinum-overlayer-coated gold nanoparticles: effects of film thickness. Langmuir 23:7365–7371

    Article  CAS  Google Scholar 

  270. Naohara H, Ye S, Uosaki K (2000) Electrocatalytic reactivity for oxygen reduction at epitaxially grown Pd thin layers of various thickness on Au(111) and Au(100). Electrochim Acta 45:3305–3309

    Article  CAS  Google Scholar 

  271. Naohara H, Ye S, Uosaki K (2001) Thickness dependent electrochemical reactivity of epitaxially palladium thin layers on Au(111) and Au(110) surfaces. J Electroanal Chem 500:435–445

    Article  CAS  Google Scholar 

  272. El-Aziz AM, Kibler LA (2002) Influence of steps on the electrochemical oxidation of CO adlayers on Pd(111) and on Pd films electrodeposited onto Au(111). J Electroanal Chem 534:107–114

    Article  CAS  Google Scholar 

  273. Kibler LA, El-Aziz AM, Kolb DM (2003) Electrochemical behaviour of pseudomorphicoverlayers: Pd on Au(111). J Mol Catal A Chem 199:57–63

    Article  CAS  Google Scholar 

  274. Yang JH, Cheng CH, Zhou W, Lee JY, Liu Z (2010) Methanol-tolerant heterogeneous PdCo@PdPt/C electrocatalyst for the oxygen reduction reaction. Fuel Cells 10:907–913

    Article  CAS  Google Scholar 

  275. Yang JH, Lee JY, Zhang Q, Zhou W, Liu Z (2008) Carbon-supported pseudo-core-shell Pd-Pt nanoparticles for ORR with and without methanol. J Electrochem Soc 155:B776–B781

    Article  CAS  Google Scholar 

  276. Yang JH, Zhou W, Cheng CH, Lee JY, Liu Z (2010) Pt-decorated PdFe nanoparticles as methanol-tolerant oxygen reduction electrocatalyst. ACS Appl Mater Interfaces 2:119–126

    Article  CAS  Google Scholar 

  277. Adzic RR, Zhang J, Sasaki K, Vukmirovic MB, Shao M, Wang JX, Nilekar AU, Mavrikakis M, Valerio JA, Uribe F (2007) Platinum monolayer fuel cell electrocatalysis. Top Catal 46:249–262

    Article  CAS  Google Scholar 

  278. Shemesh Y, Macdonald JE, Menagen G, Banin U (2011) Synthesis and photocatalytic properties of a family of CdS-PdX hybrid nanoparticles. Angew Chem Int Ed 123:1217–1221

    Article  Google Scholar 

  279. Shaviv E, Schubert O, Alves-Santos M, Goldoni G, Felice RD, Vallée F, Fatti ND, Banin U, Sönnichsen C (2011) Absorption properties of metal-semiconductor hybrid nanoparticles. ACS Nano 5:4712–4719

    Article  CAS  Google Scholar 

  280. Kim SW, Kim M, Lee WY, Hyeon T (2002) Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for Suzuki coupling reactions. J Am Chem Soc 124:7642–7643

    Article  CAS  Google Scholar 

  281. Li Y, Zhou P, Dai Z, HuZ SP, Bao J (2006) A facile synthesis of PdCo bimetallic hollow nanospheres and their application to Sonogashira reaction in aqueous media. New J Chem 30:832–837

    Article  CAS  Google Scholar 

  282. Cheng F, Ma H, Li Y, Chen J (2007) Ni1-xPtx (x = 0-0.12) hollow spheres as catalysts for hydrogen generation from ammonia borane. Inorg Chem 46:788–794

    Article  CAS  Google Scholar 

  283. Liu H, Ye F, Cao H, Ji G, Lee JY, Yang J (2013) A core–shell templated approach to the nanocomposites of silver sulfide and noble metal nanoparticles with hollow/cage-bell structures. Nanoscale 5:6901–6907

    Article  CAS  Google Scholar 

  284. Feng Y, Liu H, Wang P, Ye F, Tan Q, Yang J (2014) Enhancing the electrocatalytic property of hollow structured platinum nanoparticles for methanol oxidation through a hybrid construction. Sci Rep 4:6204

    Article  CAS  Google Scholar 

  285. Wang X, Waje M, Yan Y (2004) Methanol resistant cathodic catalyst for direct methanol fuel cells. J Electrochem Soc 151:A2183–A2188

    Article  CAS  Google Scholar 

  286. Xia BY, Wu HB, Yan Y, Low XW, Wang X (2013) Ultrathin and ultralong single-crystal platinum nanowire assemblies with highly stable electrocatalytic activity. J Am Chem Soc 135:9480–9485

    Article  CAS  Google Scholar 

  287. Liu F, Lu G, Wang C-Y (2006) Low crossover of methanol and water through thin membranes in direct methanol fuel cells. J Electrochem Soc 153:A543–A555

    Article  CAS  Google Scholar 

  288. Du CY, Zhao TS, Yang WW (2007) Effect of methanol crossover on the cathode behavior of a DMFC: a half-cell investigation. Electrochim Acta 52:5266–5271

    Article  CAS  Google Scholar 

  289. Jia N, Lefebvre MC, Halfyard J, Qi Z, Pickup PG (2000) Modification of Nafion proton exchange membranes to reduce methanol crossover in PEM fuel cells. Electrochem Solid-State Lett 3:529–531

    Article  CAS  Google Scholar 

  290. Gurau B, Smotkin ES (2002) Methanol crossover in direct methanol fuel cells: a link between power and energy density. J Power Sources 112:339–352

    Article  CAS  Google Scholar 

  291. Kim Y-M, Park K-W, Choi J-H, Park I-S, Sung Y-E (2003) A Pd-impregnated nanocomposite Nafion membrane for use in high-concentration methanol fuel in DMFC. Electrochem Commun 5:571–574

    Article  CAS  Google Scholar 

  292. Sahu AK, Pitchumani S, Sridhar P, Shukla AK (2009) Nafion and modified-Nafion membranes for polymer electrolyte fuel cells: An overview. Bull Mater Sci 32:285–294

    Article  CAS  Google Scholar 

  293. Zhang H, Huang H, Shen PK (2012) Methanol-blocking Nafion composite membranes fabricated by layer-by-layer self-assembly for direct methanol fuel cells. Int J Hydrogen Energy 37:6875–6879

    Article  CAS  Google Scholar 

  294. Zhang Y, Cai W, Si F, Ge J, Liang L, Liu C, Xing W (2012) A modified Nafion membrane with extremely low methanol permeability via surface coating of sulfonated organic silica. Chem Commun 48:2870–2872

    Article  CAS  Google Scholar 

  295. Beauger C, Lainé G, Burr A, Taguet A, Otazaghine B, Rigacci A (2013) Nafion®-sepiolite composite membranes for improved proton exchange membrane fuel cell performance. J Membr Sci 130:167–179

    Article  CAS  Google Scholar 

  296. Feng Y, Yang J, Liu H, Ye F, Yang J (2014) Selective electrocatalysts toward a prototype of the membraneless direct methanol fuel cell. Sci Rep 4:3813

    Google Scholar 

  297. Cameron DS, Hards GA, Harrison B, Potter RJ (1987) Direct methanol fuel cells. Platinum Metals Rev 31:173–181

    CAS  Google Scholar 

  298. Ferrigno R, Stroock AD, Clark TD, Mayer M, Whitesides GM (2002) Membraneless vanadium redox fuel cell using laminar flow. J Am Chem Soc 124:12930–12931

    Article  CAS  Google Scholar 

  299. Jayashree RS, Egas D, Spendelow JS, Natarajan D, Markoski LJ, Kenis PJA (2006) Air-breathing laminar flow-based direct methanol fuel cell with alkaline electrolyte. Electrochem. Solid State Lett 9:A252–A256

    Article  CAS  Google Scholar 

  300. Lam A, Wilkinson DP, Zhang J (2008) Novel approach to membraneless direct methanol fuel cells using advanced 3D anodes. Electrochim Acta 53:6890–6898

    Article  CAS  Google Scholar 

  301. Lam A, Wilkinson DP, Zhang J (2009) Control of variable power conditions for a membraneless direct methanol fuel cell. J Power Sources 194:991–996

    Article  CAS  Google Scholar 

  302. Lam A, Dara MS, Wilkinson DP, Fatih K (2012) Aerobic and anaerobic operation of an active membraneless direct methanol fuel cell. Electrochem Commun 17:22–25

    Article  CAS  Google Scholar 

  303. Tominaka S, Ohta S, Obata H, Momma T, Osaka T (2008) On-chip fuel cell: micro direct methanol fuel cell of an air-breathing, membraneless, and monolithic design. J Am Chem Soc 130:10456–10457

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the 100 Talents Program of the Chinese Academy of Sciences, National Natural Science Foundation of China (Grant Nos: 21173226, 21376247, and 21476246), and State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences (MPCS-2012-A-11) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Liu, H., Ye, F., Yang, J. (2016). Pt-Containing Heterogeneous Nanomaterials for Methanol Oxidation and Oxygen Reduction Reactions. In: Ozoemena, K., Chen, S. (eds) Nanomaterials for Fuel Cell Catalysis. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-29930-3_3

Download citation

Publish with us

Policies and ethics