Skip to main content

Rearrangements—Synthetic Reactions “Not Liable” to Retrosynthetic Analysis

  • Chapter
  • First Online:
Organic Chemistry from Retrosynthesis to Asymmetric Synthesis

Abstract

Molecular rearrangements are not amenable to retrosynthesis because of their complex mechanisms. Still, in some cases retro-rearrangements are a conceivable and useful approach to selected target molecules. In this chapter, arguments for the retrosynthetic approach to some well-known rearrangements, Beckmann, Hofmann, Arndt-Eistert, Favorskii, pinacol and Bayer-Villiger, are presented. The mechanism of these rearrangements is explained. Retrosynthesis and synthesis, which include a specific rearrangement in the key step, are proposed for selected target molecules, among them paracetamol, dinestrol and spasmolytic biphenyl carboxylic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moulay S (2002) Chem Educ Res Pract Eur 3:33–64

    Article  CAS  Google Scholar 

  2. Gawley RE (1988) The Beckmann reactions: rearrangement, elimination-additions, fragmentations and rearrangement-cyclizations. Org React 35:14–24

    Google Scholar 

  3. Yamabe Y, Tsuchida N, Yamazaki S (2005) J Org Chem 70:10638–10644

    Article  CAS  Google Scholar 

  4. Gou S, Du Z, Zhang S, Li D, Li Z, Deng Y (2006) Green Chem 8:296–300

    Article  Google Scholar 

  5. Hofmann AW (1881) Ber Dtsch Chem Ges 14:2725–2736

    Article  Google Scholar 

  6. Shioiri T (1991) Comp Org Syn 6:800–806

    Google Scholar 

  7. Clayden J (2007) Organic chemistry. Oxford University Press, pp 1073–1078

    Google Scholar 

  8. Zagulayave AA, Banek CT, Yusubove MS, Zhdankin VV (2010) Org Lett 12:4644–4647

    Article  Google Scholar 

  9. Rosen T (1991) Comp Org Synt 2:395–408

    Article  Google Scholar 

  10. Bansel RK (1988) Organic reaction mechanism, 3rd edn. McGrow Hill, pp 199–201

    Google Scholar 

  11. Knoevenagel E (1898) Ber Dtsch Chem Ges 31:2596–2619

    Article  CAS  Google Scholar 

  12. Wilk BK (1997) Tetrahedron 53:7097–8002

    Article  CAS  Google Scholar 

  13. Smith MB (2007) J. March’s advanced organic chemistry, 6th edn. J. Wiley, pp 1358–1363

    Google Scholar 

  14. Claisen L (1890) Ber Dtsch Chem Ges 23:977–986

    Article  Google Scholar 

  15. Smith MB (2007) J. March’s advanced organic chemistry, 6th edn. J. Wiley, pp 1364–136

    Google Scholar 

  16. Heck RF (1982) Org React 27:345–390

    CAS  Google Scholar 

  17. Beletskaya IP, Cheprakov AV (2000) Chem Rev 100:309–3066

    Article  Google Scholar 

  18. Chichibabin AE, Zeide OA (1914) Russ Zhr Obsch Khim 46:1212–1215

    Google Scholar 

  19. Pozharskii AF, Simonov AM (1978) Doron’kin VN. Russ Chem Rev 47:1042–1060

    Article  Google Scholar 

  20. Shimizu S, Watanabe N, Kataoka T, Shoji T, Abe N, Morishita S, Ichimura H (2002) Pyridine and pyridine derivatives. Ullmann’s encyclopedia of industrial chemistry

    Google Scholar 

  21. Scriven EFV, Murugan R (2005) Pyridine and pyridine derivatives. Kirk-Othmer encyclopedia of chemical technology, XLI

    Book  Google Scholar 

  22. Beschke H (1984) US Pat 4,447,612 (Degussa-Huls Ag)

    Google Scholar 

  23. Grendze M, Vorhies SL (1999) US Pat 6(218):543

    Google Scholar 

  24. SNIA, Viscosa (1967) GB Pat 1.063,267

    Google Scholar 

  25. Baeyer A, Villiger V (1899) Chem Ber 32:3625–3633

    Article  Google Scholar 

  26. Renz M, Meunier B (1999) Eur J Org Chem 4:737–750

    Article  Google Scholar 

  27. McDonald RN, Streppel RN, Dorsey E (1988) Org Synth Col. 6:276–278

    Google Scholar 

  28. Alvarez-Idaboy JR, Reyes L, Mora-Diez N (2007) Org Biomol Chem 5:3682–3689

    Article  CAS  Google Scholar 

  29. Criegee R (1948) Liebigs Ann Chem 560:127–132

    Article  CAS  Google Scholar 

  30. Srinivas G, MacQueen DB, Dubovik M, Mariwala RK (1998), Shape selectiv hydrogenataion of benzene to cyclohexene. In: Herkes FE (ed) Catalysis of organic reactions. Marcel Decker, Inc, pp 577–582

    Google Scholar 

  31. US 4734536 A (1988) for Asahi Kasei Kogyo Kabushiki Kaisha

    Google Scholar 

  32. US 5589600 (1992) for BASF AG

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitomir Šunjić .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Šunjić, V., Petrović Peroković, V. (2016). Rearrangements—Synthetic Reactions “Not Liable” to Retrosynthetic Analysis. In: Organic Chemistry from Retrosynthesis to Asymmetric Synthesis. Springer, Cham. https://doi.org/10.1007/978-3-319-29926-6_8

Download citation

Publish with us

Policies and ethics