Skip to main content

Abstract

Some innovative synthetic methods in organic chemistry are concisely presented, multicomponent reactions, specifically the Ugi multicomponent reaction, parallel syntheses and combinatorial chemistry, mechanochemically promoted organic reactions, organic reactions promoted by microwave irradiation and syntheses in ionic liquids. Examples of chemoselective or asymmetric syntheses completed by one of the presented specific methods are presented for the antihypertensive drug nifedipine, the alkaloid tropinone, the local anesthetic xylocaine and the HIV inhibitor tipranavir.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wender PA, Handy ST, Wright DL (1997) Chem Ind 765–772

    Google Scholar 

  2. Ugi I, Steinbruckner C (1961) Chem Ber 94:734–742

    Article  CAS  Google Scholar 

  3. Stecker A (1850) Liebigs Ann Chem 75:27–45

    Article  Google Scholar 

  4. Hantsch A (1882) Liebigs Ann Chem 215:1–82

    Article  Google Scholar 

  5. Tramontoni M, Angiolini L (1994) Manich bases-chemistry and use. UCR Press, Boca Raton

    Google Scholar 

  6. Bossert F, Meyer H, Wehinger R (1981) Angew Chem Int Ed 20:762–769

    Article  Google Scholar 

  7. Robinson R (1917) J Chem Soc 111:876–899

    Article  CAS  Google Scholar 

  8. Ugi I, Steinbruckner C (1959) DE-B,1,103,337 (for A. B. Astra)

    Google Scholar 

  9. Heravi MM, Baghernejad B, Oskooie HA, Hekmatshoar R (2008) Tetrahedron Lett 49:6101–6103

    Article  CAS  Google Scholar 

  10. Chen RE, Wang YL, Chen ZW, Su WK (2008) Can J Chem 86:875–880

    Article  CAS  Google Scholar 

  11. Ley SV, Baxendale IR (2002) Nat Rev Drug Discov 1:573–586

    Article  CAS  Google Scholar 

  12. Nicolau KC, Hanko R, Hartwig W (2002) Handbook of combinatorial chemistry, vols 1 and 2. Wiley-VCH, London

    Google Scholar 

  13. Bannworth W, Hinzen B (2006) Combinatorial chemistry-from theory to application, 2 edn. Wiley-VCH, London

    Google Scholar 

  14. Taber DF (2008) Organic synthesis: state of the art 2005–2007. Wiley Interscience, London

    Google Scholar 

  15. Petracci E (2006) Archivoc 452–478

    Google Scholar 

  16. Cibašek P, Bevk D, Pirc S, Stanovnik B, Svete J (2006) J Comb Chem 8:95–102

    Article  Google Scholar 

  17. McNaught AD, Wilkinson A (1997) IUPAC compendium of chemical terminology, 2nd edn. Blackwell Scientific Publications, Oxford

    Google Scholar 

  18. Stolle A, Ondruschka B, Krebs A, Bolm C (2012) Catalyzed organic reactions in ball mills. In Andersson PG (ed) Innovative catalysis in organic synthesis. Wiley-VCH, London

    Google Scholar 

  19. Ma X, Yuan W, Bell SEJ, James SL (2012) Chem Soc Rev 41:413–447

    Article  Google Scholar 

  20. Margitić D (2005) Kem Ind 54:351–358

    Google Scholar 

  21. Chauhan P, Chimni SS (2012) Beilst J Org Chem 8:2132–2141

    Article  CAS  Google Scholar 

  22. Friščić T, Halasz I, Strukil V, Eckert-Maksić M, Dinnebier RE (2012) Croat Chem Acta 88:367–378

    Google Scholar 

  23. Schneider F, Stolle A, Ondruschka B, Hopf H (2009) Org Proc Res Dev 13:44–48

    Article  CAS  Google Scholar 

  24. Trotzki R, Hoffmann MM, Ondruschka B (2008) Green Chem 10:767–772

    Article  CAS  Google Scholar 

  25. Loupy A (2006) (ed) Microwaves in organic synthesis. Wiley-VCH, Weinheim

    Google Scholar 

  26. de la Hoz A, Diaz-Ortiz A, Moreno A (2005) Chem Soc Rev 164–178

    Google Scholar 

  27. Strauss C, Trainor R (1995) Aust J Chem 48:1665–1674

    Article  CAS  Google Scholar 

  28. Zrinski I, Eckert-Maksić M (2005) Kem Ind 54:469–476

    CAS  Google Scholar 

  29. Kappe CO (2004) Angew Chem Int Ed 43:6250–6284

    Article  CAS  Google Scholar 

  30. Vallin KSA, Emilsson P, Larhed M, Hallberg A (2002) J Org Chem 67:6243–6246

    Article  CAS  Google Scholar 

  31. Trost BM, Andersen NG (2002) J Am Chem Soc 124:14320–14321

    Article  CAS  Google Scholar 

  32. Lehmann H, LaVecchia L (2010) Org Proc Res Dev 14:650–656

    Article  CAS  Google Scholar 

  33. Siodmiak T, Marszal MP, Proszowska A (2012) Ionic liquids: a new strategy in pharmaceutical synthesis. Mini-Reviews Org Chem 9:203–208

    Article  CAS  Google Scholar 

  34. Cserjesi P, Belafi-Bako K, Nemestothy N, Gubicza L (2008) Hung J Ind Chem 36:27–34

    Google Scholar 

  35. Sowmiah S, Subbiah CI, Chu Y-H (2012) Ionic liquids for green organic synthesis. Current Org Synth 9:74–95 Bentham Science Publishers

    Article  CAS  Google Scholar 

  36. Snelders DJM, Dyson PJ (2011) Org Lett 13:4048–4051

    Article  CAS  Google Scholar 

  37. Sarkar D, Bhattarai R, Headley AD, Ni B (2011) Syn Lett 12:1993–1997

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitomir Šunjić .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Šunjić, V., Petrović Peroković, V. (2016). Specific Synthetic Methods. In: Organic Chemistry from Retrosynthesis to Asymmetric Synthesis. Springer, Cham. https://doi.org/10.1007/978-3-319-29926-6_6

Download citation

Publish with us

Policies and ethics