Skip to main content

New Insights for Testing Linearity and Complexity with Surrogates: A Recurrence Plot Approach

  • Conference paper
  • First Online:
Recurrence Plots and Their Quantifications: Expanding Horizons

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 180))

Abstract

The detection and characterization of non-linearities in temporal series is a hot topic in some disciplines such as nondestructive testing of materials, bioacoustics and biomedical research domains. This is a complex interdisciplinary field where many different researchers are striving to achieve better and more sophisticated techniques. In this scenario, the search for new perspectives that can explain and unify some of the theories is of key importance. Recurrence Plots (RPs) and Recurrence Quantification Analysis (RQA) can play such a role. In this work, we show how RPs can be used to design tests for non-linear detection and characterization of complexity . The proposed tests are less parameter dependent and more robust than some of the traditional discriminating measures. We also illustrate the applicability of the proposed algorithms in simulations and real-world signals such as the analysis of anomalies in the voice production of mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Lehnertz, R.G. Andrzejak, J. Arnhold, T. Kreuz, F. Mormann, C. Rieke, A. Widman, C.E. Elger, Nonlinear EEG analysis in epilepsy: its possible use for interictal focus localization, seizure anticipation, and prevention. J. Clin. Neurophysiol.: Off. Publ. Am. Electroencephalogr. Soc. 18(3), 209–222 (2001)

    Article  Google Scholar 

  2. W.T. Fitch, J. Neubauer, H. Herzel, Calls out of chaos: the adaptive significance of nonlinear phenomena in mammalian vocal production. Animal Behav. 63(3), 407–418 (2002)

    Article  Google Scholar 

  3. D.G. McMillan, Non-linear predictability of UK stock market returns. Oxford Bul. Econ. Stat. 65(5), 557–573 (2003)

    Article  Google Scholar 

  4. F. Laio, A. Porporato, L. Ridolfi, S. Tamea, Detecting nonlinearity in time series driven by non-Gaussian noise: the case of river flows. Nonlinear Process. Geophys. 11(4), 463–470 (2004)

    Article  ADS  Google Scholar 

  5. P. Borgnat, P. Flandrin, P. Honeine, C. Richard, J. Xiao, Testing stationarity with surrogates: a time-frequency approach. IEEE Trans. Signal Process. 58(7), 3459–3470 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  6. M. Small, C.K. Tse, Detecting determinism in time series: the method of surrogate data. IEEE Tran. Circuits Syst. I: Fundam. Theory Appl. 50(5), 663–672 (2003)

    Article  MathSciNet  Google Scholar 

  7. J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, J.D. Farmer, Testing for nonlinearity in time series: the method of surrogate data. Physi. D: Nonlinear Phenom. 58(1), 77–94 (1992)

    Article  ADS  MATH  Google Scholar 

  8. T. Schreiber, A. Schmitz, Improved surrogate data for nonlinearity tests. Phys. Rev. Lett. 77(4), 635–638 (1996)

    Article  ADS  Google Scholar 

  9. X. Luo, T. Nakamura, M. Small, Surrogate test to distinguish between chaotic and pseudoperiodic time series. Phys. Rev. E 71(2) (2005)

    Google Scholar 

  10. T. Nakamura, M. Small, Small-shuffle surrogate data: testing for dynamics in fluctuating data with trends. Phys. Rev. E 72(5), 056216 (2005)

    Article  ADS  Google Scholar 

  11. M. Small, D. Yu, R. Harrison. Surrogate test for pseudoperiodic time series data. Phys. Rev. Lett. 87(18) (2001)

    Google Scholar 

  12. M. Thiel, M.C. Romano, J. Kurths, M. Rolfs, R. Kliegl, Twin surrogates to test for complex synchronisation. Europhys. Lett. 75(4), 535–541 (2006)

    Article  ADS  MATH  Google Scholar 

  13. M.C. Romano, M. Thiel, J. Kurths, K. Mergenthaler, R. Engbert, Hypothesis test for synchronization: twin surrogates revisited. Chaos 19(1), 015108 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  14. T. Schreiber, A. Schmitz, Improved surrogate data for nonlinearity tests. Phys. Rev. Lett. 77, 635–638 (1996)

    Article  ADS  Google Scholar 

  15. D. Kaplan, Nonlinearity and Nonstationarity: The Use of Surrogate Data in Interpreting Fluctuations, in Proceedings of the 3rd Annual Workshop on Computer Applications of Blood Pressure and Heart Rate Signals (1997)

    Google Scholar 

  16. M.C. Casdagli, A.S. Weigend, Exploring the continuum between deterministic and stochastic modeling, in Time Series Prediction: Forecasting the Future and Understanding the Past (Addison-Wesley, Reading, MA, 1994)

    Google Scholar 

  17. T. Gautama, D.P. Mandic, M.M. Van Hulle, The delay vector variance method for detecting determinism and nonlinearity in time series. Phys. D: Nonlinear Phenom. 190(3–4), 167–176 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. N.H. Packard, J.P. Crutchfield, J.D. Farmer, R.S. Shaw, Geometry from a time series. Phys. Rev. Lett. 45(9), 712 (1980)

    Google Scholar 

  19. D.P. Mandic, M. Chen, T. Gautama, M.M. Van Hulle, A. Constantinides, On the characterization of the deterministic/stochastic and linear/nonlinear nature of time series. Proc. Royal Soc. A: Math. Phys. Eng. Sci. 464(2093), 1141–1160 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. A. Fraser, H. Swinney, Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33, 1134–1140 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. M.B. Kennel, R. Brown, H.D.I. Abarbanel, Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45, 3403–3411 (1992)

    Article  ADS  Google Scholar 

  22. L. Cao, Practical method for determining the minimum embedding dimension of a scalar time series. Phys. D: Nonlinear Phenom. 110(12), 43–50 (1997)

    Google Scholar 

  23. J.P. Eckmann, S. Kamphorst, S. Oliffson, D. Ruelle, Recurrence plots of dynamical systems. Europhys. Lett. 4(9), 973–977 (1987)

    Article  ADS  Google Scholar 

  24. C.J. Keylock, Improved preservation of autocorrelative structure in surrogate data using an initial wavelet step. Nonlinear Proces. Geophys. 15(3), 435–444 (2008)

    Article  ADS  Google Scholar 

  25. D.B. Percival, A.T. Walden, Wavelet Methods for Time Series Analysis (Cambridge Series in Statistical and Probabilistic Mathematics) (Cambridge University Press, 2000)

    Google Scholar 

  26. C. Tao, J.J. Jiang, Chaotic component obscured by strong periodicity in voice production system. Phys. Rev. E 77, 061922 (2008)

    Article  ADS  Google Scholar 

  27. R. Miralles, L. Vergara, A. Salazar, J. Igual, Blind detection of nonlinearities in multiple-echo ultrasonic signals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(3), 1–11 (2008)

    Article  Google Scholar 

  28. R. Miralles, A. Carrion, D. Looney, G. Lara, D. Mandic, Characterization of the complexity in short oscillating time series: an application to seismic airgun detonations. J. Acoust. Soc. Am. 138(3), 1595–1603 (2015)

    Article  ADS  Google Scholar 

  29. M.T. Rosenstein, J.J. Collins, C.J. De Luca, A practical method for calculating largest Lyapunov exponents from small data sets. Phys. D: Nonlinear Phenom. 65(1–2), 117–134 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. P. Grassberger, I. Procaccia, Measuring the strangeness of strange attractors. Phys. D: Nonlinear Phenom. 9(1–2), 189–208 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. N. Marwan, N. Wessel, U. Meyerfeldt, A. Schirdewan, J. Kurths, Recurrence-plot-based measures of complexity and their application to heart-rate-variability data. Phys. Rev. E 66(2), 026702 (2002)

    Article  ADS  MATH  Google Scholar 

  32. C.L. Webber, J.P. Zbilut, Dynamical assessment of physiological systems and states using recurrence plot strategies. J. Appl. Physiol. 76(2), 965–973 (1994)

    Google Scholar 

  33. J.B. Gao, Recurrence time statistics for chaotic systems and their applications. Phys. Rev. Lett. 83, 3178–3181 (1999)

    Article  ADS  Google Scholar 

  34. J. Gao, H. Cai, On the structures and quantification of recurrence plots. Phys. Lett. A 270(12), 75–87 (2000)

    Google Scholar 

  35. N. Marwan, M.C. Romano, M. Thiel, J. Kurths, Recurrence plots for the analysis of complex systems. Phys. Rep. 438(5), 237–329 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  36. K. Klimaszewska, J.J. Żebrowski, Detection of the type of intermittency using characteristic patterns in recurrence plots. Phys. Rev. E 80, 026214 (2009)

    Article  ADS  Google Scholar 

  37. J.P. Zbilut, C.L. Webber Jr., Laminar recurrences, maxline, unstable singularities and biological dynamics. Eur. Phys. J. Spec. Topics 164(1), 55–65 (2008)

    Article  ADS  Google Scholar 

  38. T. Rawald, M. Sips, N. Marwan, D. Dransch, Fast Computation of Recurrences in Long Time Series. Translational Recurrences, Springer Proceedings in Mathematics and Statistics, vol. 103, pp. 17–29 (2014)

    Google Scholar 

  39. J. Theiler, D. Prichard, Constrained-realization Monte-Carlo method for hypothesis testing. Phys. D: Nonlinear Phenom. 94(4), 221–235 (1996)

    Article  ADS  MATH  Google Scholar 

  40. T. Riede, H. Herzel, K. Hammerschmidt, L. Brunnberg, G. Tembrock, The harmonic-to-noise ratio applied to dog barks. J. Acoust. Soc. Am. 110(4) (2001)

    Google Scholar 

  41. T. Riede, B.R. Mitchell, I. Tokuda, M.J. Owren, Characterizing noise in nonhuman vocalizations: Acoustic analysis and human perception of barks by coyotes and dogs. J. Acoust. Soc. Am. 118(1) (2005)

    Google Scholar 

  42. T. Riede, Vocal changes in animals during disorders. Ph.D. Report. Mathematisch-Naturwissenschaftlichen Fakultat I der Humboldt-Universitat zu Berlin (2000), http://edoc.hu-berlin.de/dissertationen/riede-tobias-2000-06-26/HTML/

  43. I. Wilden, H. Herzel, G. Peters, G. Tembrock, Subharmonics, biphonation, and deterministic chaos in mammal vocalization. Bioacoustics 9(3), 171–196 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Spanish Administration under grant TEC2011-23403.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Miralles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Carrión, A., Miralles, R. (2016). New Insights for Testing Linearity and Complexity with Surrogates: A Recurrence Plot Approach. In: Webber, Jr., C., Ioana, C., Marwan, N. (eds) Recurrence Plots and Their Quantifications: Expanding Horizons. Springer Proceedings in Physics, vol 180. Springer, Cham. https://doi.org/10.1007/978-3-319-29922-8_5

Download citation

Publish with us

Policies and ethics