Skip to main content

Fabrication

  • Chapter
  • First Online:
Particulate Composites
  • 1284 Accesses

Abstract

Particulate composite fabrication is possible using either solid-solid or solid–liquid approaches. The decision on how to manufacture the composite considers the composition, component design, production quantity, material properties, as well as the powder characteristics. The usual goal is full density, but in some applications porosity is retained for lubrication, filtration, insulation, energy absorption, or reduced strength. For example in bearings, frictional heat causes lubricating oil stored in the bearing’s pores to expand to form a lubricating film for reduced wear. Likewise, frangible practice ammunition relies on pores to induce fracture when the bullet strikes a target, thereby avoiding ricochets. However, most applications demand the performance level that comes from full density. Accordingly, fabrication approaches focused on densification are emphasized here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.B. Miracle, S.L. Donaldson (eds.), Composites. ASM Handbook, vol. 10 (ASM International, Materials Park, 2001)

    Google Scholar 

  2. S. Abkowitz, S.M. Abkowitz, H. Fisher, P.J. Schwartz, CermeTi discontinuously reinforced Ti-matrix composites: manufacturing, properties, and applications. J. Met. 56(5), 37–41 (2004)

    Google Scholar 

  3. M.F. Ashby, Background Reading HIP 6.0 (Engineering Department, Cambridge University, Cambridge, 1990)

    Google Scholar 

  4. A. Bose, W.B. Eisen, Hot Consolidation (Metal Powder Industries Federation, Princeton, 2003)

    Google Scholar 

  5. R. Orru, R. Licheri, A.M. Locci, A. Cincotti, G. Cao, Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater. Sci. Eng. R63, 127–287 (2009)

    Article  Google Scholar 

  6. M. Pellizzari, A. Fedrizzi, M. Zadra, Spark plasma cosintering of hot work and high speed steel powder for fabrication of a novel tool steel with composite microstructure. Powder Technol. 214, 292–299 (2011)

    Article  Google Scholar 

  7. R.M.K. Young, T.W. Clyne, A powder mixing and preheating route to slurry production for semisolid diecasting. Powder Metall. 29, 195–199 (1986)

    Article  Google Scholar 

  8. J. Tian, K. Shobu, Fabrication of silicon carbide - mullite composite by melt infiltration. J. Am. Ceram. Soc. 86, 39–42 (2003)

    Article  Google Scholar 

  9. X. Liu, Y. Li, F. Lou, M. Li, Al/SiC composites with high reinforcement content prepared by PIM/pressure infiltration. Powder Injection Moulding Int. 1(4), 53–55 (2007)

    Google Scholar 

  10. Z.Y. Liu, D. Kent, G.B. Schaffer, Powder injection molding of an Al-AlN metal matrix composite. Mater. Sci. Eng. A513, 352–356 (2009)

    Article  Google Scholar 

  11. R.M. German, Powder Metallurgy and Particulate Materials Processing (Metal Powder Industries Federation, Princeton, 2005)

    Google Scholar 

  12. M.H. Bocanegra-Bernal, Review: Hot Isostatic Pressing (HIP) technology and its applications to metals and ceramics. J. Mater. Sci. 39, 6399–6420 (2004)

    Article  Google Scholar 

  13. H. Ye, X.Y. Liu, H. Hong, Fabrication of metal matrix composites by metal injection molding - a review. J. Mater. Process. Technol. 200, 12–24 (2008)

    Article  Google Scholar 

  14. F.F. Lange, L. Atteraas, F. Zok, J.R. Porter, Deformation consolidation of metal powders containing steel inclusions. Acta Metall. Mater. 39, 209–219 (1991)

    Article  Google Scholar 

  15. R.J. Henderson, H.W. Chandler, A.R. Akisanya, C.M. Chandler, S.A. Nixon, Micromechanical model of powder compaction. J. Mech. Phys. Solids 49, 739–759 (2001)

    Article  Google Scholar 

  16. D.N. Smith, Processing modelling in powder metallurgy and particulate materials. Powder Metall. 45, 294–296 (2002)

    Article  Google Scholar 

  17. A. Arockiasamy, S.J. Park, R.M. German, Viscoelastic behaviour of porous sintered steels compact. Powder Metall. 53, 107–111 (2010)

    Article  Google Scholar 

  18. Z.J. Lin, J.Z. Zhang, B.S. Li, L.P. Wang, H.K. Mao, R.J. Hemley, Y. Zhao, Superhard diamond/tungsten carbide nanocomposites. Appl. Phys. Lett. 98, 121914 (2011)

    Article  Google Scholar 

  19. R.M. German, Sintering: From Empirical Observations to Scientific Principles (Elsevier, Oxford, 2014)

    Google Scholar 

  20. K. Lu, Nanoparticulate Materials Synthesis, Characterization, and Processing (Wiley, Hoboken, 2013)

    Google Scholar 

  21. H. Tanaka, H. Nakano, Y. Suyama, Grain shrinkage driven by surface and grain boundary energy in Ba5Nb4O15 powder. Acta Mater. 55, 2423–2432 (2007)

    Article  Google Scholar 

  22. S.J. Park, S.H. Chung, J.M. Martin, J.L. Johnson, R.M. German, Master sintering curve for densification derived from a constitutive equation with consideration of grain growth: application to tungsten heavy alloys. Metall. Mater. Trans. 39A, 2941–2948 (2008)

    Article  Google Scholar 

  23. L. Olmos, C.L. Martin, D. Bouvard, Sintering of mixtures of powders: experiments and modelling. Powder Technol. 190, 134–140 (2009)

    Article  Google Scholar 

  24. R.M. German, Coarsening in sintering: grain shape distribution, grain size distribution, and grain growth kinetics in solid-pore systems. Crit. Rev. Solid State Mater. Sci. 35, 263–305 (2010)

    Article  Google Scholar 

  25. H.K. Kang, S.B. Kan, Behavior of porosity and copper oxidation in W/Cu composite produced by plasma spray. J. Therm. Spray Technol. 13, 223–228 (2003)

    Article  Google Scholar 

  26. F.J. Humpherys, W.S. Miller, M.R. Djazeb, Microstructural development during thermomechanical processing of particulate metal-matrix composites. Mater. Sci. Technol. 6, 1157–1166 (1990)

    Article  Google Scholar 

  27. D.S. Wilkinson, M.F. Ashby, Pressure sintering by power law creep. Acta Metall. 23, 1277–1285 (1975)

    Article  Google Scholar 

  28. S.H. Chung, Y.S. Kwon, S.J. Park, R.M. German, Modeling and simulation of press and sinter powder metallurgy, in Metals Process Simulation, ed. by D.U. Furrer, S.L. Semiatin. ASM Handbook, vol. 33B (ASM International, Materials Park, 2010), pp. 323–334

    Google Scholar 

  29. D.C. Blaine, S.J. Park, R.M. German, Linearization of master sintering curve. J. Am. Ceram. Soc. 92, 1400–1409 (2009)

    Article  Google Scholar 

  30. S.J. Park, P. Suri, E. Olevsky, R.M. German, Master sintering curve formulated from constitutive models. J. Am. Ceram. Soc. 92, 1410–1413 (2009)

    Article  Google Scholar 

  31. G. Boothroyd, P. Dewhurst, W.A. Knight, Product Design for Manufacturing and Assembly, 3rd edn. (CRC Press, Boca Raton, 2010)

    Google Scholar 

  32. Y. Goto, A. Tsuge, Mechanical properties of unidirectionally oriented SiC-whisker-reinforced Si3N4 fabricated by extrusion and hot pressing. J. Am. Ceram. Soc. 76, 1420–1424 (1993)

    Article  Google Scholar 

  33. S.R. Martins, W.Z. Misiolek, Consolidation of particulate materials in extrusion. Rev. Particulate Mater. 4, 43–70 (1966)

    Google Scholar 

  34. S. Turenne, N. Legros, S. Laplante, F. Ajersch, Mechanical behavior of aluminum matrix composites during extrusion in the semisolid state. Metall. Mater. Trans. 30A, 1137–1146 (1999)

    Article  Google Scholar 

  35. R.M. German, P. Suri, S.J. Park, Review: liquid phase sintering. J. Mater. Sci. 44, 1–39 (2009)

    Article  Google Scholar 

  36. K.H. Kate, R.K. Enneti, S.J. Park, R.M. German, S.V. Atre, Predicting powder-polymer mixture properties for PIM design. Crit. Rev. Solid State Mater. Sci. 39, 197–214 (2014)

    Article  Google Scholar 

  37. F. Hussain, M. Hojjati, M. Okamoto, R.E. Gorga, Polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J. Compos. Mater. 40, 1511–1575 (2006)

    Article  Google Scholar 

  38. F. Ahmad, R. M. German, Evaluation of Metal Composite Mixes for Powder Injection Molding, In Advances in Powder Metallurgy and Particulate Materials - 2006 (Metal Powder Industries Federation, Princeton, 2006), pp. 9.168–9.180

    Google Scholar 

  39. F.J. Semel, K.S. Narasimhan, Steel based infiltration to achieve full density, high performance PM parts. Powder Metall. 52, 94–100 (2009)

    Article  Google Scholar 

  40. M.N. Rahaman, L.C. De Jonghe, Sintering of ceramic particulate composites: effect of matrix density. J. Am. Ceram. Soc. 74, 433–436 (1991)

    Article  Google Scholar 

  41. K. Kondoh, Titanium metal matrix composites by powder metallurgy (PM) routes, in Titanium Powder Metallurgy, ed. by M.A. Qian, F.H. Froes (Elsevier, Oxford, 2015), pp. 277–297

    Google Scholar 

  42. K. Peng, M. Yi, L. Ran, Y. Ge, Reactive hot pressing of SiC/MoSi2 nanocomposites. J. Am. Ceram. Soc. 90, 3708–3711 (2007)

    Article  Google Scholar 

  43. S. Sugiyama, Y. Kodaira, H. Taimatsu, Synthesis of WC-W2C composite ceramics by reactive resistance heating hot pressing and their mechanical properties. J. Jpn. Soc. Powder Powder Metall. 54, 281–286 (2007)

    Article  Google Scholar 

  44. O. Guillon, J. Langer, Master sintering curve applied to the field-assisted sintering technique. J. Mater. Sci. 45, 5191–5195 (2010)

    Article  Google Scholar 

  45. W. Xu, X. Wu, X. Wei, E.W. Liu, K. Xia, Nanostructured multiphase titanium-based particulate composites consolidated by severe plastic deformation. Inte. J. Powder Metall. 50(1), 49–56 (2014)

    Google Scholar 

  46. Q. Zhang, B.L. Xiao, W.G. Wang, Z.Y. Ma, Reactive mechanism and mechanical properties of in situ composites fabricated from an Al-TiO2 system by friction stir processing. Acta Mater. 60, 7090–7103 (2012)

    Article  Google Scholar 

  47. M.S. Kumar, P. Chandrasekar, P. Chandramohan, M. Mohanraj, Characterisation of titanium - titanium boride composites process by powder metallurgy techniques. Mater. Charact. 73, 43–51 (2012)

    Article  Google Scholar 

  48. C.L. Hu, M.N. Rahaman, Factors controlling the sintering of ceramic particulate composites: II, coated inclusion particles. J. Am. Ceram. Soc. 75, 2066–2070 (1992)

    Article  Google Scholar 

  49. K. S. Hwang, P. Fan, H. Wang, J. Guo, X. Wang, Z. Z. Fang, Fabrication of functionally graded WC-Co using a novel carburizing process, in Proceedings International Conference on Refractory Metals and Hard Materials, 18th Plansee Seminar, Reutte, Austria, 2013, paper HM1, pp. 1–7

    Google Scholar 

  50. K. Morsi, The diversity of combustion synthesis processing: a review. J. Mater. Sci. 47, 68–92 (2012)

    Article  Google Scholar 

  51. H. Attar, M. Bonisch, M. Calin, L.C. Zhang, K. Zhuravleva, A. Funk, S. Schdino, C. Yang, J. Eckert, Comparative study of microstructures and mechanical properties of in situ Ti-TiB composites produced by selective laser melting, powder metallurgy, and casting technologies. J. Mater. Res. 29, 1941–1950 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

German, R.M. (2016). Fabrication. In: Particulate Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-29917-4_7

Download citation

Publish with us

Policies and ethics