Skip to main content

Property Models

  • Chapter
  • First Online:
Particulate Composites
  • 1271 Accesses

Abstract

This chapter assembles property models for particulate composites. Most of the models start with inputs of composition and constituent phase properties. These are often satisfactory for predicting properties. For improved accuracy, many formulations require additional features such as the grain size, microstructure homogeneity, or interface strength. The interface effect is especially important to mechanical properties that involve deformation. Interfaces can be weak or strong, leading to significant changes to composite conductivity, toughness, strength, and ductility [1, 2]. While a high concentration of hard phase creates a harder composite, often the maximum strength is at an intermediate concentration. For example, in a study using 0.1 μm WC and 1 μm Al2O3 mixed powders consolidated by 5 min of spark sintering at 70 MPa and 1800 °C (2073 K), the following observations were made with respect to composition effects [3]:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F.L. Matthews, R.D. Rawlings, Composite Materials: Engineering and Science (CRC Press, Boca Raton, 2008)

    Google Scholar 

  2. S.Y. Fu, X.Q. Feng, B. Lauke, Y.W. Mai, Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos. Part B 39, 933–961 (2008)

    Article  Google Scholar 

  3. D. Zheng, X. Li, X. Ai, C. Yang, Y. Li, Bulk WC-Al2O3 composites prepared by spark plasma sintering. Int. J. Refract. Met. Hard Mater. 30, 51–56 (2012)

    Article  Google Scholar 

  4. Z. Fan. P. Tsakiropoulos, A.P. Miodownik, A generalized law of mixtures. J. Mater. Sci. 29, 141–150 (1994)

    Google Scholar 

  5. K.K. Chawla, Composite Materials Science and Engineering, 3rd edn. (Springer, New York, 2013)

    Google Scholar 

  6. J.A. Belk, M.R. Edwards, W.J. Farrell, B.K. Mullah, Deformation behaviour of tungsten-copper composites. Powder Metall. 36, 293–296 (1993)

    Article  Google Scholar 

  7. Anonymous, Cambridge Engineering Selector (Granta Design, Cambridge, updated annually)

    Google Scholar 

  8. Y.G. Gogotsi, Review particulate silicon nitride based composites. J. Mater. Sci. 29, 2541–2556 (1994)

    Article  Google Scholar 

  9. J. Wang, R. Stevens, Review: Zirconia-toughened alumina (ZTA) ceramics. J. Mater. Sci. 24, 3421–3440 (1989)

    Article  Google Scholar 

  10. L. Xu, S. Wei, J. Li, G. Zhang, B. Dai, Preparation, microstructure, and properties of molybdenum alloys reinforced by in-situ Al2O3 particles. Int. J. Refract. Met. Hard Mater. 30, 208–212 (2012)

    Article  Google Scholar 

  11. R. Sadangi, D. Kapoor, T. Zahrah, in Powder Metallurgy Processed Magnesium Matrix Composites, Advances in Powder Metallurgy and Particulate Materials (Metal Powder Industries Federation, Princeton, 2015), pp. 7.113–7.124

    Google Scholar 

  12. D.J. Lloyd, Particle reinforced aluminum and magnesium matrix composites. Int. Mater. Rev. 39, 1–23 (1994)

    Article  Google Scholar 

  13. S. Luyckx, in The Hardness of Tungsten Carbide-Cobalt Hardmetal, ed. by R. Riedel. Handbook of Ceramic Hard Materials, vol 2 (Wiley-VCH, Weinheim, 2000), pp. 946–964

    Google Scholar 

  14. J. Gurland, A structural approach to the yield strength of two-phase alloys with coarse microstructures. Mater. Sci. Eng. 40, 59–71 (1979)

    Article  Google Scholar 

  15. T.Y. Chan, S.T. Lin, Sintering of elemental carbonyl iron and carbonyl nickel powder mixtures. J. Mater. Sci. 32, 1963–1967 (1997)

    Article  Google Scholar 

  16. J. Corrochano, M. Lieblich, J. Ibanez, On the role of matrix grain size and particulate reinforcement on the hardness of powder metallurgy Al-Mg-Si/MoSi2 composites. Compos. Sci. Technol. 69, 1818–1824 (2009)

    Article  Google Scholar 

  17. R.W. Rice, Porosity of Ceramics (Marcel Dekker, New York, 1998)

    Google Scholar 

  18. A. Manonukul, N. Muenya, F. Leaux, S. Amaranan, Effects of replacing metal powder with powder space holder on metal foam produced by metal injection moulding. J. Mater. Process. Technol. 210, 529–535 (2010)

    Article  Google Scholar 

  19. S.A. Cho, F.J. Arenas, J. Ochoa, Densification and hardness of Al2O3-Cr2O3 system with and without Ti addition. Ceram. Int. 16, 301–309 (1990)

    Article  Google Scholar 

  20. S. Ahmed, F.R. Jones, A review of particulate reinforcement theories for polymer composites. J. Mater. Sci. 25, 4933–4942 (1990)

    Article  Google Scholar 

  21. S.D. Henry, C. Moosbrugger, G.J. Anton, B.R. Sanders, N. Hrivnak, C. Terman, J. Kinson, K. Muldoon, W.W. Scott (eds.), Composites, ASM Handbook (ASM International, Materials Park, 2001)

    Google Scholar 

  22. M.G. Phillips, Simple geometrical models for Young’s modulus of fibrous and particulate composites. Compos. Sci. Technol. 43, 95–100 (1992)

    Article  Google Scholar 

  23. L.D. Wegner, L.J. Gibson, The mechanical behaviour of interpenetrating phase composites: I: modelling. Int. J. Mech. Sci. 42, 925–942 (2000)

    Article  Google Scholar 

  24. F.J. Guild, R.J. Young, A predictive model for particulate filled composite materials, part 1 hard particles. J. Mater. Sci. 24, 298–306 (1989)

    Article  Google Scholar 

  25. T.W. Clyne, P.J. Withers, An Introduction to Metal Matrix Composites (Cambridge University Press, Cambridge, 1993)

    Book  Google Scholar 

  26. P. Kwon, C.K.H. Dharan, Effective moduli of high volume fraction particulate composites. Acta Metall. Mater. 43, 1141–1147 (1995)

    Article  Google Scholar 

  27. H. Doi, Elastic and Plastic Properties of WC-Co Composite Alloys (Freund Publishing House, Tel-Aviv, 1974)

    Google Scholar 

  28. H. Doi, Y. Fujiwara, K. Miyake, Y. Oosawa, A systematic investigation of elastic moduli of WC-Co alloys. Metall. Trans. 1, 1417–1425 (1970)

    Google Scholar 

  29. F. Danusso, G. Tieghi, Strength versus composition of rigid matrix particulate composites. Polymer 27, 1385–1390 (1986)

    Article  Google Scholar 

  30. A. Mortensen, J. Llorca, Metal matrix composites. Annu. Rev. Mater. Res. 40, 243–270 (2010)

    Article  Google Scholar 

  31. D.K. Hale, Review: the physical properties of composite materials. J. Mater. Sci. 11, 2105–2141 (1976)

    Article  Google Scholar 

  32. B.H. Rabin, R.M. German, Microstructure effects on tensile properties of tungsten-nickel-iron composites. Metall. Trans. 19A, 1523–1532 (1988)

    Article  Google Scholar 

  33. M.B. Waldron, The production of cermets containing a relatively large amount of dispersed phase. Powder Metall. 10, 288–306 (1967)

    Article  Google Scholar 

  34. N. Claussen, Fracture toughness of Al2O3 with an unstabilized ZrO2 dispersed phase. J. Am. Ceram. Soc. 59, 49–51 (1976)

    Article  Google Scholar 

  35. S.C. Tjong, Z.Y. Ma, Microstructural and mechanical characteristics of in situ metal matrix composites. Mater. Sci. Eng. 29, 49–113 (2000)

    Google Scholar 

  36. E. Pagounis, V.K. Lindroos, Processing and properties of particulate reinforced steel matrix composites. Mater. Sci. Eng. A246, 221–234 (1998)

    Article  Google Scholar 

  37. J. Segurado, J.L. Llorca, Computation micromechanics of composites: the effect of particle spatial distribution. Mech. Mater. 38, 873–883 (2006)

    Article  Google Scholar 

  38. V. Provenzano, N.P. Louat, M.A. Imam, K. Sadananda, Ultrafine superstrength materials. Nanostr. Mater. 1, 89–94 (1992)

    Google Scholar 

  39. K. Jia, T.E. Fischer, B. Gallois, Microstructure, hardness, and toughness of nanostructured and conventional WC-Co composites. Nanostr. Mater. 10, 875–891 (1998)

    Article  Google Scholar 

  40. H.K. Lee, S.H. Pyo, Multi-level modeling of effective elastic behavior and progressive weakened interface in particulate composites. Compos. Sci. Technol. 68, 387–397 (2008)

    Article  Google Scholar 

  41. J.L. Chermant, A. Deschanvres, F. Osterstock, Factors influencing the rupture stress of hardmetals. Powder Metall. 20, 63–69 (1977)

    Article  Google Scholar 

  42. N. Hirosaki, Y. Akimune, M. Mitomo, Effect of grain growth of beta-silicon nitride on strength, weibull modulus, and fracture toughness. J. Am. Ceram. Soc. 76, 1892–1894 (1993)

    Article  Google Scholar 

  43. D.L. McDanels, Analysis of stress-strain, fracture, and ductility behavior of aluminum matrix composites containing discontinuous silicon carbide reinforcement. Metall. Trans. 16A, 1105–1115 (1985)

    Article  Google Scholar 

  44. X. Liu, G. Hu, A continuum micromechanical theory of overall plasticity for particulate composites including particle size effect. Int. J. Plast. 21, 777–799 (2005)

    Article  Google Scholar 

  45. J. Llorca, C. Gonzalez, Microstructural factors controlling the strength and ductility of particle reinforced metal matrix composites. J. Mech. Phys. Solids 46, 1–28 (1998)

    Article  Google Scholar 

  46. F.J. Humpherys, W.S. Miller, M.R. Djazeb, Microstructural development during thermo-mechanical processing of particulate metal-matrix composites. Mater. Sci. Technol. 6, 1157–1166 (1990)

    Article  Google Scholar 

  47. T. Christman, A. Needleman, S. Suresh, An experimental and numerical study of deformation metal-ceramic composites. Acta Metall. 37, 3029–3050 (1989)

    Article  Google Scholar 

  48. S. Li, D. Xiong, M. Liu, S. Bai, X. Zhao, Thermophysical properties of SiC/Al composites with three dimensional interpenetrating network structure. Ceram. Int. 40, 7539–7544 (2014)

    Article  Google Scholar 

  49. L.S. Sigl, Processing and mechanical properties of boron carbide sintered with TiC. J. Euro. Ceram. Soc. 18, 1521–1529 (1998)

    Article  Google Scholar 

  50. Z. Wang, S. Li, M. Wang, G. Wu, X. Sun, M. Liu, Effect of SiC whiskers on microstructure and mechanical properties of the MoSi2-SiCw composites. Int. J. Refract. Met. Hard Mater. 41, 489–494 (2013)

    Article  Google Scholar 

  51. V. Naglieri, P. Palmero, L. Montanaro, J. Chevalier, Elaboration of alumina-zirconia composites: role of the zirconia content on the microstructure and mechanical properties. Materials 6, 2090–2102 (2013)

    Article  Google Scholar 

  52. C.C. Perng, J.R. Hwang, J.L. Doong, Elevated temperature, low-cycle fatigue behaviour of an Al2O3 P/6061-T6 aluminum matrix composite. Compos. Sci. Technol. 49, 225–236 (1993)

    Article  Google Scholar 

  53. Y. Uematsu, K. Tokaji, M. Kawamura, Fatigue behaviour of SiC-particulate reinforced aluminum alloy composites with different particle sizes at elevated temperature. Compos. Sci. Technol. 68, 2785–2791 (2008)

    Article  Google Scholar 

  54. J.D. Whittenberge, R.K. Viswanadham, S.K. Mannan, B. Sprissler, Elevated temperature slow plastic deformation of NiAl-TiB2 particulate composites at 1200 and 1300 K. J. Mater. Sci. 25, 35–44 (1990)

    Article  Google Scholar 

  55. J. Wang, E.M. Taleff, D. Kovar, High temperature deformation of Al2O3/Y—TZP particulate composite. Acta Mater. 51, 3571–3583 (2003)

    Article  Google Scholar 

  56. A.V. Nair, J.K. Tien, R.C. Bates, SiC-reinforced aluminum metal matrix composites. Int. Metals Rev. 30, 275–290 (1985)

    Google Scholar 

  57. K.H. Kate, R.K. Enneti, S.J. Park, R.M. German, S.V. Atre, Predicting powder-polymer mixture properties for PIM design. Crit. Rev. Solid State Mater. Sci. 39, 197–214 (2014)

    Article  Google Scholar 

  58. Y. Hirata, Representation of thermal expansion coefficient of solid material with particulate inclusion. Ceram. Int. 41, 2706–2713 (2015)

    Article  Google Scholar 

  59. B. Weidenfeller, M. Hofer, F.R. Schilling, Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene. Compos. Part A 35, 423–429 (2004)

    Article  Google Scholar 

  60. H.A. Bruck, B.H. Rabin, Evaluation of rule-of-mixtures predictions of thermal expansion in powder-processed Ni-Al2O3 composites. J. Am. Ceram. Soc. 82, 2927–2930 (1999)

    Article  Google Scholar 

  61. R.M. German, A model for the thermal properties of liquid phase sintered composites. Metall. Trans. 24A, 1745–1752 (1993)

    Article  Google Scholar 

  62. A.A. Fahmy, A.N. Ragai, Thermal expansion behavior of two-phase solids. J. Appl. Phys. 41, 5108–5111 (1970)

    Article  Google Scholar 

  63. Y.Z. Wan, Y.L. Wang, H.L. Luo, G.X. Cheng, Effect of interfacial bonding strength on thermal expansion behaviour of PM Al2O3/copper alloy composites. Powder Metall. 43, 76–78 (2000)

    Google Scholar 

  64. J. Jancar, A. Dianselmo, A.T. Dibenedetto, The yield strength of particulate reinforced thermoplastic composites. Polym. Eng. Sci. 32, 1394–1399 (1992)

    Article  Google Scholar 

  65. A. Boudeene, L. Ibos, M. Fois, E. Gehin, J.C. Majeste, Thermophysical properties of polypropylene/aluminum composites. J. Polym. Sci. B 42, 722–732 (2004)

    Article  Google Scholar 

  66. Z.H. Jin, R.C. Batra, Stress intensity relaxation at the tip of an edge crack in a functionally graded material subjected to a thermal shock. J. Therm. Stresses 19, 317–339 (1996)

    Article  Google Scholar 

  67. N. Zhang, X.J. Zhao, H.Q. Ru, X.Y. Wang, D.L. Chen, Thermal shock behavior of nanosized ZrN particulate reinforced AlON composites. Ceram. Int. 39, 367–375 (2013)

    Article  Google Scholar 

  68. J.W. Zimmermann, G.E. Hilmas, W.G. Fahrenholtz, Thermal shock resistance of ZrB2 and ZrB2–30 % SiC. Mater. Chem. Phys. 112, 140–145 (2008)

    Article  Google Scholar 

  69. S.G. Long, Y.C. Zhou, Thermal fatigue of particle reinforced metal-matrix composite induced by laser heating and mechanical load. Compos. Sci. Technol. 65, 1391–1400 (2005)

    Article  Google Scholar 

  70. H. Tian, T.T. Liu, H.F. Cheng, Microstructural and electrical properties of thick film resistors on oxide/oxide ceramic—matrix composites. Ceram. Int. 41, 3214–3219 (2015)

    Article  Google Scholar 

  71. D.S. McLachlan, M. Blaszkiewicz, R.E. Newnham, Electrical resistivity of composites. J. Am. Ceram. Soc. 73, 2187–2203 (1990)

    Article  Google Scholar 

  72. X. Wang, H. Yang, M. Chen, J. Zou, S. Liang, Fabrication and arc erosion behaviors of Ag-TiB2 contact materials. Powder Technol. 256, 20–24 (2014)

    Article  Google Scholar 

  73. S. Vivs, C. Guizard, C. Oberlin, L. Cot, Zirconia-tungsten composites: synthesis and characterisation for different metal volume fractions. J. Mater. Sci. 36, 5271–5280 (2001)

    Article  Google Scholar 

  74. C. Garcia-Cordovilla, J. Narciso, E. Lewis, Abrasive wear resistance of aluminum alloy/ceramic particulate composites. Wear 192, 170–177 (1996)

    Article  Google Scholar 

  75. F.E. Kennedy, A.C. Balbahadur, D.S. Lashmore, The friction and wear of Cu-based silicon carbide particulate metal matrix composites for brake applications. Wear 203, 715–721 (1997)

    Article  Google Scholar 

  76. G.T. Kuster, M.N. Toksoz, Velocity and attenuation of seismic waves in two-phase media: part I. Theoretical formulations. Geophysics 39, 587–606 (1974)

    Article  Google Scholar 

  77. C.W. Nan, R. Birringer, D.R. Clarke, H. Gleiter, Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 81, 6692–6699 (1997)

    Article  Google Scholar 

  78. D.M. Bigg, Mechanical properties of particulate filled polymers. Polym. Compos. 8, 115–122 (1987)

    Article  Google Scholar 

  79. J.L. Johnson, Opportunities for PM processing of metal matrix composites. Int. J. Powder Metall. 47(2), 19–28 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

German, R.M. (2016). Property Models. In: Particulate Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-29917-4_4

Download citation

Publish with us

Policies and ethics