Skip to main content

Applications

  • Chapter
  • First Online:
Particulate Composites

Abstract

Particulate composites span a tremendous range of applications. Some easily identified composites are used every day in the form of concrete, electrical switches, automotive tires, refrigerator magnets, patio wood decking, dental amalgams, and kitchen counter tops. The more technical applications extend the array to include artificial bones and metal cutting tools. Detailing all of these is beyond the space available in this book and beyond the interest of most readers. Hence, this chapter highlights a few examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W.F. Gale, T.C. Totemeier (eds.), Smithells Metals Reference Book, 8th edn. (Elsevier, Amsterdam, 2004)

    Google Scholar 

  2. G. Popescu, M. Zsigmond, P. Moldovan, Processing of a composite material like AlSi/SiCp through powder metallurgy. J. Adv. Mater. 35, 16–19 (2003)

    Google Scholar 

  3. H. Shen, C.J. Lissenden, 3D finite element analysis of particle-reinforced aluminum. Mater. Sci. Eng. A338, 271–281 (2003)

    Google Scholar 

  4. J.E. Spowart, D.B. Miracle, The influence of reinforcement morphology on the tensile response of 6061/SiC/25p discontinuously-reinforced aluminum. Mater. Sci. Eng. A357, 111–123 (2003)

    Article  Google Scholar 

  5. R.L. Deuis, C. Subramanian, J.M. Yellup, Dry sliding wear of aluminum composites - a review. Compos. Sci. Technol. 57, 415–435 (1997)

    Article  Google Scholar 

  6. T.W. Cline, P.J. Withers, An Introduction to Metal Matrix Composites (Cambridge University Press, Cambridge, 1993)

    Book  Google Scholar 

  7. R.L. Matthews, R.D. Rawlings, Composite Materials: Engineering and Science (CRC Press, Boca Raton, 1999)

    Google Scholar 

  8. Anonymous, Cambridge Engineering Selector (Granta Design, Cambridge, updated annually)

    Google Scholar 

  9. K.J.A. Brookes, Half a century of hardmetals. Met. Powder Rep. 50(12), 22–28 (1995)

    Article  Google Scholar 

  10. K.J.A. Brookes, Hardmetals and Other Hard Materials, 3rd edn. (International Carbide Data, Hertsfordshire, 1998)

    Google Scholar 

  11. P. Ettmayer, Hardmetals and cermets. Annu. Rev. Mater. Sci. 19, 145–164 (1989)

    Article  Google Scholar 

  12. H.E. Exner, Physical and chemical nature of cemented carbides. Int. Met. Rev. 24, 149–173 (1979)

    Article  Google Scholar 

  13. S. Luyckx, The hardness of tungsten carbide - cobalt hardmetal, in Handbook of Ceramic Hard Materials, ed. by R. Riedel, vol. 2 (Wiley-VCH, Weinheim, 2000), pp. 946–964

    Chapter  Google Scholar 

  14. V.K. Sarin, Cemented carbide cutting tools, in Advances in Powder Technology, ed. by G.Y. Chin (American Society for Metals, Metals Park, 1982), pp. 253–288

    Google Scholar 

  15. W. Hoeland, G. Beall, Glass-Ceramic Technology (American Ceramic Society, Westerville, 2002)

    Google Scholar 

  16. J.R. Kelly, I. Nishimura, S.D. Campbell, Ceramics in dentistry: historical roots and current perspectives. J. Prosthet. Dent. 75, 18–32 (1996)

    Article  Google Scholar 

  17. J.M. Meyer, W.J. O’Brien, C.U. Yu, Sintering of dental porcelain enamels. J. Dent. Res. 55, 696–699 (1976)

    Article  Google Scholar 

  18. D. Belnap, A. Griffo, Homogeneous and structured PCD WC-Co Materials for drilling. Diam. Relat. Mater. 13, 1914–1922 (2004)

    Article  Google Scholar 

  19. H. Katzman, W.F. Libby, Sintered diamond compacts with a cobalt binder. Science 172, 1132–1134 (1971)

    Article  Google Scholar 

  20. J. Konstanty, Cobalt as a Matrix in Diamond Impregnated Tools for Stone Sawing Applications, 2nd edn. (Wydawnictwa AGH, Krakow, 2003)

    Google Scholar 

  21. J. Konstanty, Powder Metallurgy Diamond Tools (Elsevier, Amsterdam, 2005)

    Google Scholar 

  22. P. Slade (ed.), Electrical Contacts: Principles and Applications, vol. 2 (CRC Press, Boca Raton, 2013)

    Google Scholar 

  23. X. Wang, H. Yang, M. Chen, J. Zou, S. Liang, Fabrication and arc erosion behaviors of Ag-TiB2 contact materials. Powder Technol. 256, 20–24 (2014)

    Article  Google Scholar 

  24. S.Y. Chang, J.H. Lin, S.J. Lin, T.Z. Kattamis, Processing copper and silver matrix composites by electroless plating and hot pressing. Metall. Mater. Trans. 30A, 1119–1136 (1999)

    Article  Google Scholar 

  25. C.D. Desforges, Sintered materials for electrical contacts. Powder Metall. 22, 139–144 (1979)

    Article  Google Scholar 

  26. S.K. Bhattacharya, Metal Filled Polymers (CRC Press, Boca Raton, 1986)

    Google Scholar 

  27. J.V. Milewski, J.V. Katz (eds.), Handbook of Fillers and Reinforcements for Plastics (Van Nostrand Reinhold, New York, 1978)

    Google Scholar 

  28. S. Ahmed, F.R. Jones, A review of particulate reinforcement theories for polymer composites. J. Mater. Sci. 25, 4933–4942 (1990)

    Article  Google Scholar 

  29. H.S. Tekce, D. Kumlutas, H. Tavman, Effect of particle shape on the thermal conductivity of copper reinforced polymer composites. J. Reinf. Plast. Compos. 26, 113–121 (2007)

    Article  Google Scholar 

  30. F. Carmona, Conducting filled polymers. Physica A 157, 461–469 (1989)

    Article  Google Scholar 

  31. S.J. Schneider (ed.), Ceramics and Glasses. Engineered Materials Handbook, vol. 4 (ASM International, Materials Park, 1991)

    Google Scholar 

  32. D. Chan, G.W. Stachowiak, Review of automotive brake friction materials. J. Automob. Eng. 218, 953–966 (2004)

    Article  Google Scholar 

  33. F.A. Lloyd, M.A. DiPino, Advances in Wet Friction Materials – 75 Years of Progress, SAE Technical Paper No. 800977, Warrendale, PA (1980)

    Google Scholar 

  34. C.J. Smithells, A new alloy of high density. Nature 139, 490–491 (1937)

    Article  Google Scholar 

  35. H.J. Ryu, S.H. Hong, W.H. Baek, Microstructure and mechanical properties of mechanically alloyed and solid-state sintered tungsten heavy alloys. Mater. Sci. Eng. 291A, 91–96 (2000)

    Article  Google Scholar 

  36. R.M. German, A. Bose, S.S. Mani, Sintering time and atmosphere influences on the microstructure and mechanical properties of tungsten heavy alloys. Metall. Trans. 23A, 211–219 (1992)

    Article  Google Scholar 

  37. Z.C. Cordero, E.L. Huskins, M. Park, S. Livers, M. Frary, B.E. Schuster, C.A. Schuh, Powder-route synthesis and mechanical testing of ultrafine grain tungsten alloys. Metall. Mater. Trans. 45A, 3609–3618 (2014)

    Article  Google Scholar 

  38. A. Bose, Alloying and powder injection molding of tungsten heavy alloys: a review, in Tungsten and Refractory Metals, ed. by A. Bose, R. Dowding (Metal Powder Industries Federation, Princeton, 1995), pp. 21–33

    Google Scholar 

  39. B.H. Rabin, R.M. German, Microstructure effects on tensile properties of tungsten-nickel-iron composites. Metall. Trans. 19A, 1523–1532 (1988)

    Article  Google Scholar 

  40. B.M. Ma, J.W. Herchenroeder, B. Smith, M. Suda, D.N. Brown, Z. Chen, Recent development in bonded NdFeB magnets. J. Magn. Magn. Mater. 239, 418–423 (2002)

    Article  Google Scholar 

  41. J. Ormerod, The physical metallurgy and processing of sintered rare earth permanent magnets. J. Less-Common Met. 111, 49–69 (1985)

    Article  Google Scholar 

  42. J. Ormerod, S. Constantinides, Bonded permanent magnets: current status and future opportunities. J. Appl. Phys. 81, 4816–4820 (1997)

    Article  Google Scholar 

  43. J.S. Cook, P.L. Rossiter, Rare-earth iron boron supermagnets. Crit. Rev. Solid State Mater. Sci. 15, 509–550 (1989)

    Article  Google Scholar 

  44. S. Tiller, Soft magnetic composites in the development of a new compact transversal flux electric motor. Powder Metall. Rev. 2(3), 75–77 (2013)

    Google Scholar 

  45. Y.G. Guo, J.G. Zhu, P.A. Watterson, Development of a PM transverse flux motor with soft magnetic composite core. IEEE Trans. Energy Convers. 21, 426–434 (2006)

    Article  Google Scholar 

  46. Y. Huang, J. Zhu, Y. Guo, Z. Lin, Q. Hu, Design and analysis of a high speed claw pole motor with soft magnetic composite core. IEEE Trans. Magn. 43, 2492–2494 (2007)

    Article  Google Scholar 

  47. I. Hemmati, H.R.M. Hosseini, A. Kianvash, The correlations between processing parameters and magnetic properties of iron-resin soft magnetic composite. J. Magn. Magn. Mater. 305, 147–151 (2006)

    Article  Google Scholar 

  48. H. Shkorollahi, K. Janghorban, Soft magnetic composite materials (SMCs). J. Mater. Process. Technol. 189, 1–12 (2007)

    Article  Google Scholar 

  49. V. Josef, L.K. Tan, Thermal performance of MIM thermal management device. Powder Injection Moulding Int. 1, 59–62 (2007)

    Google Scholar 

  50. W. Nakayama, Thermal management of electronic equipment: a review of technology and research topics. Appl. Mech. Rev. 39, 1847–1868 (1986)

    Article  Google Scholar 

  51. R.M. German, K.F. Hens, J.L. Johnson, Powder metallurgy processing of thermal management materials for microelectronic applications. Int. J. Powder Metall. 30, 205–215 (1994)

    Google Scholar 

  52. C. Zweben, Advances in high performance thermal management materials: a review. J. Adv. Mater. 39, 3–10 (2007)

    Google Scholar 

  53. A. Bothate, R.M. German, W. Li, E.A. Olevsky, W.M. Daoush, S. Moustafa, D. Whychell, Advances in W-Cu: new powder systems, in Advances in Powder Metallurgy and Particulate Materials (Metal Powder Industries Federation, Princeton, 2010), pp. 7.6–7.20

    Google Scholar 

  54. J. Wang, R. Stevens, Review zirconia-toughened alumina (ZTA) ceramics. J. Mater. Sci. 24, 3421–3440 (1987)

    Article  Google Scholar 

  55. K. Kageyama, Y. Harada, H. Kato, Preparation and mechanical properties of alumina-zirconia composites with agglomerated structures using presintered powder. Mater. Trans. 44, 1571–1576 (2003)

    Article  Google Scholar 

  56. E. Medvedovski, Alumina ceramics for ballistic protection, part 2. Ceram. Bull. 81(4), 45–50 (2002)

    Google Scholar 

  57. F. Findik, H. Uzun, Silver-based refractory contact materials. Mater. Des. 24, 489–492 (2003)

    Article  Google Scholar 

  58. H. Moriguchi, K. Tsuduki, A. Ikegaya, Y. Miyomoto, Y. Morisada, Sintering behavior and properties of diamond/cemented carbides. Int. J. Refract. Met. Hard Mater. 25, 237–243 (2007)

    Article  Google Scholar 

  59. T. Schubert, A. Brendel, K. Schmid, T. Koeck, L. Ciupinski, W. Zielinski, T. Weissgarber, B. Kieback, Interfacial design of Cu/SiC composites prepared by powder metallurgy for heat sink applications. Compos. Part A 38, 2398–2403 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

German, R.M. (2016). Applications. In: Particulate Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-29917-4_11

Download citation

Publish with us

Policies and ethics