Epigenetic Biomarkers of Prenatal Maternal Stress

  • Fernanda SerpeloniEmail author
  • Karl M. Radtke
  • Tobias Hecker
  • Thomas Elbert
Part of the Epigenetics and Human Health book series (EHH)


Diverse maternal experiences or mood disturbances before birth pose a substantial risk for poor lifetime mental health outcomes. DNA methylation variation in response to prenatal stress has been shown in animal model studies. Although prenatal time represents a sensitive period of development, little is known about the impact of maternal stress during pregnancy on DNA methylation during the life span in humans. In this review, we provide a brief summary of key human studies that bring evidence of DNA methylation in association with prenatal stress. We discuss common findings in the studies such as the type of maternal stress associated to offspring’s DNA methylation and plasticity/stability of epigenetic variations. We also suggest the contribution of additional candidate gene approaches and genome-wide DNA methylation profile, in order to further explore and define the relationship between early social environment, epigenetics, and long-term outcomes. The implications of maternal care on DNA methylation as well as the importance of maternal well-being during pregnancy to prevent future health problems are considered.


Prenatal stress Epigenetics Maternal care DNA methylation 



We are thankful to our colleagues, particularly Dr. Frederico Henning and Danie Meyer, for the helpful suggestions. We were supported by a grant from the European Research Council (ERC) through ERC advanced grant 323977 (to T.E) and a grant from the CAPES/DAAD (to F.S).


  1. Austin M-P, Colton J, Priest S et al (2013) The antenatal risk questionnaire (ANRQ): acceptability and use for psychosocial risk assessment in the maternity setting. Women Birth 26:17–25. doi: 10.1016/j.wombi.2011.06.002 PubMedCrossRefGoogle Scholar
  2. Barker DJ (2004) The developmental origins of adult disease. J Am Coll Nutr 23:588S–595S, doi:23/suppl_6/588S [pii]PubMedCrossRefGoogle Scholar
  3. Bergman K, Sarkar P, Glover V, O’Connor TG (2010) Maternal prenatal cortisol and infant cognitive development: moderation by infant-mother attachment. Biol Psychiatry 67:1026–1032. doi: 10.1016/j.biopsych.2010.01.002 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Betts KS, Williams GM, Najman JM, Alati R (2015) The relationship between maternal depressive, anxious, and stress symptoms during pregnancy and adult offspring behavioral and emotional problems. Depress Anxiety 32:82–90. doi: 10.1002/da.22272 PubMedCrossRefGoogle Scholar
  5. Beversdorf DQ, Manning SE, Hillier A et al (2005) Timing of prenatal stressors and autism. J Autism Dev Disord 35:471–478. doi: 10.1007/s10803-005-5037-8 PubMedCrossRefGoogle Scholar
  6. Blackmore ER, Moynihan JA, Rubinow DR et al (2011) Psychiatric symptoms and proinflammatory cytokines in pregnancy. Psychosom Med 73:656–663. doi: 10.1097/PSY.0b013e31822fc277 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Brown AS, Susser ES, Lin SP et al (1995) Increased risk of affective disorders in males after second trimester prenatal exposure to the Dutch hunger winter of 1944-45. Br J Psychiatry 166:601–606. doi: 10.1192/bjp.166.5.601 PubMedCrossRefGoogle Scholar
  8. Brown AS, Schaefer CA, Wyatt RJ et al (2000) Maternal exposure to respiratory infections and adult schizophrenia spectrum disorders: a prospective birth cohort study. Schizophr Bull 26:287–295PubMedCrossRefGoogle Scholar
  9. Buchmann AF, Zohsel K, Blomeyer D et al (2014) Interaction between prenatal stress and dopamine D4 receptor genotype in predicting aggression and cortisol levels in young adults. Psychopharmacology (Berl) 231:3089–3097. doi: 10.1007/s00213-014-3484-7 CrossRefGoogle Scholar
  10. Buitelaar JK, Huizink AC, Mulder EJ et al (2003) Prenatal stress and cognitive development and temperament in infants. Neurobiol Aging 24:53–60. doi: 10.1016/S0197-4580(03)00050-2 CrossRefGoogle Scholar
  11. Buss C, Davis EP, Muftuler LT et al (2010) High pregnancy anxiety during mid-gestation is associated with decreased gray matter density in 6-9-year-old children. Psychoneuroendocrinology 35:141–153. doi: 10.1016/j.psyneuen.2009.07.010 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Cao-Lei L, Massart R, Suderman MJ et al (2014) DNA methylation signatures triggered by prenatal maternal stress exposure to a natural disaster: project ice storm. PLoS ONE 9, e107653. doi: 10.1371/journal.pone.0107653 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Carpenter L, Shattuck T, Tyrka A et al (2011) Effect of childhood physical abuse on cortisol stress response. Psychopharmacology (Berl) 214:367–375. doi: 10.1007/s00213-010-2007-4 CrossRefGoogle Scholar
  14. Champagne FA (2008) Epigenetic mechanisms and the transgenerational effects of maternal care. Front Neuroendocrinol 29:386–397PubMedPubMedCentralCrossRefGoogle Scholar
  15. Champagne FA, Curley JP (2011) Epigenetic influence of the social environment. In: Petronis A, Mill J (eds) Brain, Behavior & epigenetics. Springer, Berlin, pp 185–208Google Scholar
  16. Chen J, Li Q, Rialdi A et al (2014) Influences of maternal stress during pregnancy on the Epi/genome: comparison of placenta and umbilical cord blood. J Depress Anxiety 3:1–6Google Scholar
  17. Chrousos G, Gold P (1992) The concepts of stress and stress system disorders - overview of physical homeostasis. JAMA 267:1244–1252PubMedCrossRefGoogle Scholar
  18. Conradt E, Lester BM, Appleton AA et al (2013) The roles of DNA methylation of NR3C1 and 11beta-HSD2 and exposure to maternal mood disorder in utero on newborn neurobehavior. Epigenetics 8:1321–1329. doi: 10.4161/epi.26634 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Cornelius MD, Goldschmidt L, De Genna NM, Larkby C (2012) Long-term effects of prenatal cigarette smoke exposure on behavior dysregulation among 14-year-old offspring of teenage mothers. Matern Child Health J 16:694–705. doi: 10.1007/s10995-011-0766-0 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Coussons-Read ME, Okun ML, Nettles CD (2007) Psychosocial stress increases inflammatory markers and alters cytokine production across pregnancy. Brain Behav Immun 21:343–350. doi: 10.1016/j.bbi.2006.08.006 PubMedCrossRefGoogle Scholar
  21. Daskalakis NP, Yehuda R (2014) Site-specific methylation changes in the glucocorticoid receptor exon 1F promoter in relation to life adversity: systematic review of contributing factors. Front Neurosci. doi: 10.3389/fnins.2014.00369 PubMedPubMedCentralGoogle Scholar
  22. De Kloet ER, Joëls M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6:463–475. doi: 10.1038/nrn1683 PubMedCrossRefGoogle Scholar
  23. Devlin AM, Brain U, Austin J, Oberlander TF (2010) Prenatal exposure to maternal depressed mood and the MTHFR C677T variant affect SLC6A4 methylation in infants at birth. PLoS ONE 5, e12201. doi: 10.1371/journal.pone.0012201 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Diego MA, Field T, Hernandez-Reif M et al (2004) Prepartum, postpartum, and chronic depression effects on newborns. Psychiatry Interpers Biol Process 67:63–80. doi: 10.1521/psyc. CrossRefGoogle Scholar
  25. Ehrlich S, Weiss D, Burghardt R et al (2010) Promoter specific DNA methylation and gene expression of POMC in acutely underweight and recovered patients with anorexia nervosa. J Psychiatr Res 44:827–833. doi: 10.1016/j.jpsychires.2010.01.011 PubMedCrossRefGoogle Scholar
  26. Elbert T, Schauer M, Ruf M et al (2011) The tortured brain: imaging neural representations of traumatic stress experiences using RSVP with affective pictorial stimuli. Zeitschrift fur Psychol/J Psychol 219:167–174. doi: 10.1027/2151-2604/a000064 Google Scholar
  27. Entringer S, Wüst S, Kumsta R et al (2008) Prenatal psychosocial stress exposure is associated with insulin resistance in young adults. Am J Obstet Gynecol. doi: 10.1016/j.ajog.2008.03.006 PubMedPubMedCentralGoogle Scholar
  28. Entringer S, Buss C, Kumsta R et al (2009a) Prenatal psychosocial stress exposure is associated with subsequent working memory performance in young women. Behav Neurosci 123:886–893. doi: 10.1037/a0016265 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Entringer S, Kumsta R, Hellhammer DH et al (2009b) Prenatal exposure to maternal psychosocial stress and HPA axis regulation in young adults. Horm Behav 55:292–298. doi: 10.1016/j.yhbeh.2008.11.006 PubMedCrossRefGoogle Scholar
  30. Field T, Diego M, Hernandez-Reif M et al (2002) Prenatal anger effects on the fetus and neonate. J Obstet Gynaecol 22:260–266. doi: 10.1080/01443610220130526 PubMedCrossRefGoogle Scholar
  31. Gapp K, von Ziegler L, Tweedie-Cullen RY, Mansuy IM (2014) Early life epigenetic programming and transmission of stress-induced traits in mammals. Bioessays 36:491–502. doi: 10.1002/bies.201300116 PubMedCrossRefGoogle Scholar
  32. Gitau R, Cameron A, Fisk NM, Glover V (1998) Fetal exposure to maternal cortisol. Lancet 352:707–708. doi: 10.1016/S0140-6736(05)60824-0 PubMedCrossRefGoogle Scholar
  33. Glover V (2011) Annual research review: prenatal stress and the origins of psychopathology: an evolutionary perspective. J Child Psychol Psychiatry 52:356–367. doi: 10.1111/j.1469-7610.2011.02371.x PubMedCrossRefGoogle Scholar
  34. Glover V, O’Connor TG, Heron J, Golding J (2004) Antenatal maternal anxiety is linked with atypical handedness in the child. Early Hum Dev 79:107–118. doi: 10.1016/j.earlhumdev.2004.04.012 PubMedCrossRefGoogle Scholar
  35. Gluckman PD, Hanson MA (2004a) Living with the past: evolution, development, and patterns of disease. Science 305:1733–1736. doi: 10.1126/science.1095292 PubMedCrossRefGoogle Scholar
  36. Gluckman PD, Hanson MA (2004b) Maternal constraint of fetal growth and its consequences. Semin Fetal Neonatal Med 9:419–425. doi: 10.1016/j.siny.2004.03.001 PubMedCrossRefGoogle Scholar
  37. Gluckman PD, Hanson MA, Spencer HG (2005) Predictive adaptive responses and human evolution. Trends Ecol Evol 20:527–533. doi: 10.1016/j.tree.2005.08.001 PubMedCrossRefGoogle Scholar
  38. Grizenko N, Fortier ME, Zadorozny C et al (2012) Maternal stress during pregnancy, ADHD symptomatology in children and genotype: gene-environment interaction. J Can Acad Child Adolesc Psychiatry 21:9–15PubMedPubMedCentralGoogle Scholar
  39. Hackett JA, Reddington JP, Nestor CE et al (2012) Promoter DNA methylation couples genome-defence mechanisms to epigenetic reprogramming in the mouse germline. Development 139:3623–3632. doi: 10.1242/dev.081661 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hales CN, Barker DJ (2001) The thrifty phenotype hypothesis. Br Med Bull 60:5–20PubMedCrossRefGoogle Scholar
  41. Harlow HF, Suomi SJ (1974) Induced depression in monkeys. Behav Biol 12:273–296PubMedCrossRefGoogle Scholar
  42. Harrison PA, Sidebottom AC (2008) Systematic prenatal screening for psychosocial risks. J Health Care Poor Underserved 19:258–276PubMedCrossRefGoogle Scholar
  43. Hecker T, Radtke KM, Hermenau K, et al (2016) Associations between child abuse, mental health and epigenetic modifications in the POMC gene: a study with children in Tanzania. Development & Psychopathology. Advance online publication. doi:  10.1017/S0954579415001248
  44. Heijmans BT, Tobi EW, Stein AD et al (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA 105:17046–17049. doi: 10.1073/pnas.0806560105 PubMedPubMedCentralCrossRefGoogle Scholar
  45. Heim C (2000) Pituitary-adrenal and autonomic responses to stress in women after sexual and physical abuse in childhood. JAMA 284:592. doi: 10.1001/jama.284.5.592 PubMedCrossRefGoogle Scholar
  46. Hompes T, Izzi B, Gellens E et al (2013) Investigating the influence of maternal cortisol and emotional state during pregnancy on the DNA methylation status of the glucocorticoid receptor gene (NR3C1) promoter region in cord blood. J Psychiatr Res 47:880–891. doi: 10.1016/j.jpsychires.2013.03.009 PubMedCrossRefGoogle Scholar
  47. Huizink AC, Robles de Medina PG, Mulder EJH et al (2003) Stress during pregnancy is associated with developmental outcome in infancy. J Child Psychol Psychiatry 44:810–818. doi: 10.1111/1469-7610.00166 PubMedCrossRefGoogle Scholar
  48. Huizink AC, Bartels M, Rose RJ et al (2008) Chernobyl exposure as stressor during pregnancy and behaviour in adolescent offspring. J Epidemiol Community Health. doi: 10.1111/j.1600-0447.2007.01050.x PubMedPubMedCentralGoogle Scholar
  49. Joubert BR, Haberg SE, Nilsen RM et al (2012) 450K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ Health Perspect 120:1425–1431. doi: 10.1289/ehp.1205412 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Khashan AS, Abel KM, McNamee R et al (2008) Higher risk of offspring schizophrenia following antenatal maternal exposure to severe adverse life events. Arch Gen Psychiatry 65:146–152. doi: 10.1001/archgenpsychiatry.2007.20 PubMedCrossRefGoogle Scholar
  51. King S, Laplante DP (2005) The effects of prenatal maternal stress on children’s cognitive development: project ice storm. Stress 8:35–45. doi: 10.1080/10253890500108391 PubMedCrossRefGoogle Scholar
  52. King S, Mancini-Marïe A, Brunet A et al (2009) Prenatal maternal stress from a natural disaster predicts dermatoglyphic asymmetry in humans. Dev Psychopathol 21:343–353. doi: 10.1017/S0954579409000364 PubMedCrossRefGoogle Scholar
  53. Kinney DK, Miller AM, Crowley DJ et al (2008) Autism prevalence following prenatal exposure to hurricanes and tropical storms in Louisiana. J Autism Dev Disord 38:481–488. doi: 10.1007/s10803-007-0414-0 PubMedCrossRefGoogle Scholar
  54. Kirkham C, Harris S, Grzybowski S (2005) Evidence-based prenatal care: Part I. General prenatal care and counseling issues. Am Fam Physician 71:1307–1316PubMedGoogle Scholar
  55. Kleinhaus K, Harlap S, Manor O et al (2013) Prenatal stress and affective disorders in a population birth cohort. Bipolar Disord 15:92–99. doi: 10.1016/S0924-9338(12)75557-8 PubMedCrossRefGoogle Scholar
  56. Lane M, Robker RL, Robertson SA (2014) Parenting from before conception. Science 345:756–760. doi: 10.1126/science.1254400 PubMedCrossRefGoogle Scholar
  57. Laplante DP, Brunet A, Schmitz N et al (2008) Project ice storm: prenatal maternal stress affects cognitive and linguistic functioning in 5 1/2-year-old children. J Am Acad Child Adolesc Psychiatry 47:1063–1072. doi: 10.1097/CHI.0b013e31817eec80 PubMedCrossRefGoogle Scholar
  58. Liu Y, Murphy SK, Murtha AP et al (2012) Depression in pregnancy, infant birth weight and DNA methylation of imprint regulatory elements. Epigenetics 7:735–746. doi: 10.4161/epi.20734 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Marinova Z, Maercker A, Küffer A, et al (2015) DNA methylation profiles of elderly individuals subjected to indentured childhood labor (Manuscript submitted for publication)Google Scholar
  60. Marsit CJ, Maccani MA, Padbury JF, Lester BM (2012) Placental 11-beta hydroxysteroid dehydrogenase methylation is associated with newborn growth and a measure of neurobehavioral outcome. PLoS ONE 7:1–9. doi: 10.1371/journal.pone.0033794 CrossRefGoogle Scholar
  61. McEwen BS, Lasley E (2002) The end of stress as we know it. Joseph Henry Press, Washington, DCGoogle Scholar
  62. Mendelson T, DiPietro JA, Costigan KA et al (2011) Associations of maternal psychological factors with umbilical and uterine blood flow. J Psychosom Obstet Gynaecol 32:3–9. doi: 10.3109/0167482X.2010.544427 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Mennes M, Stiers P, Lagae L, Van den Bergh B (2006) Long-term cognitive sequelae of antenatal maternal anxiety: involvement of the orbitofrontal cortex. Neurosci Biobehav Rev 30:1078–1086. doi: 10.1016/j.neubiorev.2006.04.003 PubMedCrossRefGoogle Scholar
  64. Moisiadis VG, Matthews SG (2014) Glucocorticoids and fetal programming part 2: mechanisms. Nat Rev Endocrinol 10:403–411. doi: 10.1038/nrendo.2014.74 PubMedCrossRefGoogle Scholar
  65. Monk C, Newport DJ, Korotkin JH et al (2012) Uterine blood flow in a psychiatric population: impact of maternal depression, anxiety, and psychotropic medication. Biol Psychiatry 72:483–490. doi: 10.1016/j.biopsych.2012.05.006 PubMedPubMedCentralCrossRefGoogle Scholar
  66. Mulligan C, D’Errico N, Stees J, Hughes D (2012) Methylation changes at NR3C1 in newborns associate with maternal prenatal stress exposure and newborn birth weight. Epigenetics 7:853–857. doi: 10.4161/epi.21180 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Murgatroyd C, Quinn JP, Sharp HM et al (2015) Effects of prenatal and postnatal depression, and maternal stroking, at the glucocorticoid receptor gene. Transl Psychiatry 5, e560. doi: 10.1038/tp.2014.140 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Murphy SK, Adigun A, Huang Z et al (2012) Gender-specific methylation differences in relation to prenatal exposure to cigarette smoke. Gene 494:36–43. doi: 10.1016/j.gene.2011.11.062 PubMedCrossRefGoogle Scholar
  69. Nemoda Z, Massart R, Suderman M et al (2015) Maternal depression is associated with DNA methylation changes in cord blood T lymphocytes and adult hippocampi. Transl Psychiatry 5, e545. doi: 10.1038/tp.2015.32 PubMedPubMedCentralCrossRefGoogle Scholar
  70. Neugebauer R, Hoek HW, Susser E (1999) Prenatal exposure to wartime famine and development of antisocial personality disorder in early adulthood. JAMA 282:455–462. doi: 10.1097/00006254-200001000-00005 PubMedCrossRefGoogle Scholar
  71. Niederhofer H, Reiter A (2004) Prenatal maternal stress, prenatal fetal movements and perinatal temperament factors influence behavior and school marks at the age of 6 years. Fetal Diagn Ther 19:160–162. doi: 10.1159/000075142 PubMedCrossRefGoogle Scholar
  72. Non AL, Binder AM, Kubzansky LD, Michels KB (2014) Genome-wide DNA methylation in neonates exposed to maternal depression, anxiety, or SSRI medication during pregnancy. Epigenetics 9:964–972. doi: 10.4161/epi.28853 PubMedPubMedCentralCrossRefGoogle Scholar
  73. O’Connor TG, Caprariello P, Blackmore ER et al (2007) Prenatal mood disturbance predicts sleep problems in infancy and toddlerhood. Early Hum Dev 83:451–458. doi: 10.1016/j.earlhumdev.2006.08.006 PubMedCrossRefGoogle Scholar
  74. O’Connor TG, Bergman K, Sarkar P, Glover V (2013) Prenatal cortisol exposure predicts infant cortisol response to acute stress. Dev Psychobiol 55:145–155. doi: 10.1002/dev.21007 PubMedCrossRefGoogle Scholar
  75. O’Connor TG, Monk C, Fitelson EM (2014) Practitioner review: maternal mood in pregnancy and child development - implications for child psychology and psychiatry. J Child Psychol Psychiatry Allied Discip 55:99–111. doi: 10.1111/jcpp.12153 CrossRefGoogle Scholar
  76. O’Donnell K, O’Connor TG, Glover V (2009) Prenatal stress and neurodevelopment of the child: focus on the HPA axis and role of the placenta. Dev Neurosci 31:285–292PubMedCrossRefGoogle Scholar
  77. O’Donnell KJ, Bugge Jensen A, Freeman L et al (2012) Maternal prenatal anxiety and downregulation of placental 11β-HSD2. Psychoneuroendocrinology 37:818–826. doi: 10.1016/j.psyneuen.2011.09.014 PubMedCrossRefGoogle Scholar
  78. O’Donnell KJ, Glover V, Jenkins J et al (2013) Prenatal maternal mood is associated with altered diurnal cortisol in adolescence. Psychoneuroendocrinology 38:1630–1638. doi: 10.1016/j.psyneuen.2013.01.008 PubMedPubMedCentralCrossRefGoogle Scholar
  79. Oberlander TF, Weinberg J, Papsdorf M et al (2008) Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics 3:97–106. doi: 10.4161/epi.3.2.6034 PubMedCrossRefGoogle Scholar
  80. Ornishchenko N, Karpova N, Sabri F et al (2008) Long-lasting depression-like behavior and epigenetic changes of BDNF gene expression induced by perinatal exposure to methylmercury. J Neurochem 106(3):1378–1387. doi:  10.1111/j.1471-4159.2008.05484
  81. Painter RC, de Rooij SR, Bossuyt PM et al (2006) Blood pressure response to psychological stressors in adults after prenatal exposure to the Dutch famine. J Hypertens 24:1771–1778. doi: 10.1097/01.hjh.0000242401.45591.e7 PubMedCrossRefGoogle Scholar
  82. Pirini F, Guida E, Lawson F et al (2015) Nuclear and mitochondrial DNA alterations in newborns with prenatal exposure to cigarette smoke. Int J Environ Res Public Health 12:1135–1155PubMedPubMedCentralCrossRefGoogle Scholar
  83. Provencal N, Binder EB (2015) The neurobiological effects of stress as contributors to psychiatric disorders: focus on epigenetics. Curr Opin Neurobiol 30:31–37. doi: 10.1016/j.conb.2014.08.007 PubMedCrossRefGoogle Scholar
  84. Provençal N, Suderman MJ, Guillemin C et al (2012) The signature of maternal rearing in the methylome in rhesus macaque prefrontal cortex and T cells. J Neurosci 32:15626–15642. doi: 10.1523/JNEUROSCI.1470-12.2012 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Radtke KM, Ruf M, Gunter HM et al (2011) Transgenerational impact of intimate partner violence on methylation in the promoter of the glucocorticoid receptor. Transl Psychiatry 1, e21PubMedPubMedCentralCrossRefGoogle Scholar
  86. Ravelli ACJ, Van Der Meulen JHP, Michels RPJ et al (1998) Glucose tolerance in adults after prenatal exposure to famine. Lancet 351:173–177. doi: 10.1016/S0140-6736(97)07244-9 PubMedCrossRefGoogle Scholar
  87. Ravelli AC, van der Meulen JH, Osmond C et al (1999) Obesity at the age of 50 y in men and women exposed to famine. Am J Clin Nutr 70:811–816PubMedGoogle Scholar
  88. Reid AJ, Biringer A, Carroll JD et al (1998) Using the ALPHA form in practice to assess antenatal psychosocial health. C Can Med Assoc J 159:677–684Google Scholar
  89. Resnik R, Brink GW, Wilkes M (1979) Catecholamine-mediated reduction in uterine blood flow after nicotine infusion in the pregnant ewe. J Clin Invest 63:1133–1136. doi: 10.1172/JCI109406 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Rice F, Harold GT, Boivin J et al (2010) The links between prenatal stress and offspring development and psychopathology: disentangling environmental and inherited influences. Psychol Med 40:335–345. doi: 10.1017/S0033291709005911 PubMedCrossRefGoogle Scholar
  91. Roth TL, Sweatt JD (2011) Annual research review: epigenetic mechanisms and environmental shaping of the brain during sensitive periods of development. J Child Psychol Psychiatry 52:398–408. doi: 10.1111/j.1469-7610.2010.02282.x PubMedPubMedCentralCrossRefGoogle Scholar
  92. Sandman CA, Davis EP, Buss C, Glynn LM (2011) Prenatal programming of human neurological function. Int J Pept. doi: 10.1155/2011/837596 PubMedPubMedCentralGoogle Scholar
  93. Sandman CA, Davis EP, Glynn LM (2012) Prescient human fetuses thrive. Psychol Sci 23:93–100. doi: 10.1177/0956797611422073 PubMedCrossRefGoogle Scholar
  94. Sarkar S, Craig MC, Dell’acqua F et al (2014) Prenatal stress and limbic-prefrontal white matter microstructure in children aged 6–9 years: a preliminary diffusion tensor imaging study. World J Biol Psychiatry 15:346–352. doi: 10.3109/15622975.2014.903336 PubMedCrossRefGoogle Scholar
  95. Sato T, Sakado K, Uehara T et al (1998) Dysfunctional parenting as a risk factor to lifetime depression in a sample of employed Japanese adults: evidence for the “affectionless control” hypothesis. Psychol Med 28:737–742PubMedCrossRefGoogle Scholar
  96. Schalinski I, Elbert T, Steudte-Schmiedgen S, Kirschbaum C (2015) The cortisol paradox of trauma-related disorders: lower phasic responses but higher tonic levels of cortisol are associated with sexual abuse in childhoodGoogle Scholar
  97. Seckl JR (2004) Prenatal glucocorticoids and long-term programming. Eur J Endocrinol 151(Suppl):U49–U62PubMedCrossRefGoogle Scholar
  98. Sommershof A, Aichinger H, Engler H et al (2009) Substantial reduction of naïve and regulatory T cells following traumatic stress. Brain Behav Immun 23:1117–1124. doi: 10.1016/j.bbi.2009.07.003 PubMedCrossRefGoogle Scholar
  99. Soni A (2009) The five most costly conditions, 1996 and 2006: estimates for the U.S. civilian noninstitutionalized population. Stat Br #248 2006:1–5Google Scholar
  100. Spyridou A, Schauer M (2015) Obstetric care providers are able to assess psychosocial risks, identify and refer high-risk pregnant women: validation of a short assessment tool – the KINDEX Greek version. BMC Pregnancy Childbirth 15:41PubMedPubMedCentralCrossRefGoogle Scholar
  101. Spyridou A, Schauer M, Ruf-Leuschner M (2014) Obstetric care providers assessing psychosocial risk factors during pregnancy: validation of a short screening tool – the KINDEX Spanish version. Child Adolesc Psychiatry Ment Heal 8:30CrossRefGoogle Scholar
  102. Stanner SA, Bulmer K, Andrès C et al (1997) Does malnutrition in utero determine diabetes and coronary heart disease in adulthood? Results from the Leningrad siege study, a cross sectional study. BMJ 315:1342–1348. doi: 10.1136/bmj.315.7119.1342 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Susser ES, Lin SP (1992) SChizophrenia after prenatal exposure to the dutch hunger winter of 1944–1945. Arch Gen Psychiatry 49:983–988. doi: 10.1001/archpsyc.1992.01820120071010 PubMedCrossRefGoogle Scholar
  104. Susser E, Neugebauer R, Hoek HW et al (1996) Schizophrenia after prenatal famine. Further evidence. Arch Gen Psychiatry 53:25–31. doi: 10.1001/archpsyc.1996.01830010027005 PubMedCrossRefGoogle Scholar
  105. Szyf M (2011) DNA methylation, the early-life social environment and behavioral disorders. J Neurodev Disord 3:238–249. doi: 10.1007/s11689-011-9079-2 PubMedPubMedCentralCrossRefGoogle Scholar
  106. Szyf M (2012) The early-life social environment and DNA methylation. Clin Genet 81:341–349. doi: 10.1111/j.1399-0004.2012.01843.x PubMedCrossRefGoogle Scholar
  107. Taborelli E, Krug I, Karwautz A et al (2013) Maternal anxiety, overprotection and anxious personality as risk factors for eating disorder: a sister pair study. Cognit Ther Res 37:820–828. doi: 10.1007/s10608-012-9518-8 CrossRefGoogle Scholar
  108. Teixeira JM, Fisk NM, Glover V (1999) Association between maternal anxiety in pregnancy and increased uterine artery resistance index: cohort based study. BMJ 318:153–157. doi: 10.1136/bmj.318.7177.153 PubMedPubMedCentralCrossRefGoogle Scholar
  109. Tobi EW, Lumey LH, Talens RP et al (2009) DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet 18:4046–4053. doi: 10.1093/hmg/ddp353 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Tobi EW, Goeman JJ, Monajemi R et al (2014) DNA methylation signatures link prenatal famine exposure to growth and metabolism. Nat Commun. doi: 10.1038/ncomms6592 PubMedPubMedCentralGoogle Scholar
  111. Tsai P-C, Spector TD, Bell J (2012) Using epigenome-wide association scans of DNA methylation in age-related complex human traits. Epigenomics 4:511–526PubMedCrossRefGoogle Scholar
  112. Tung J, Barreiro LB, Johnson ZP et al (2012) Social environment is associated with gene regulatory variation in the rhesus macaque immune system. Proc Natl Acad Sci USA 109:6490–6495PubMedPubMedCentralCrossRefGoogle Scholar
  113. Turecki G, Meaney MJ (2014) Effects of the social environment and stress on glucocorticoid receptor gene methylation: a systematic review. Biol Psychiatry 1–10. doi: 10.1016/j.biopsych.2014.11.022Google Scholar
  114. Tyrka AR, Price LH, Marsit C et al (2012) Childhood adversity and epigenetic modulation of the leukocyte glucocorticoid receptor: preliminary findings in healthy adults. PLoS ONE 7, e30148. doi: 10.1371/journal.pone.0030148 PubMedPubMedCentralCrossRefGoogle Scholar
  115. Van Den Bergh BRH, Mennes M, Oosterlaan J et al (2005) High antenatal maternal anxiety is related to impulsivity during performance on cognitive tasks in 14- and 15-year-olds. Neurosci Biobehav Rev 29:259–269. doi: 10.1016/j.neubiorev.2004.10.010 PubMedCrossRefGoogle Scholar
  116. Van den Bergh BRH, Van Calster B, Smits T et al (2008) Antenatal maternal anxiety is related to HPA-axis dysregulation and self-reported depressive symptoms in adolescence: a prospective study on the fetal origins of depressed mood. Neuropsychopharmacology 33:536–545. doi: 10.1038/sj.npp.1301540 PubMedCrossRefGoogle Scholar
  117. Van der Knaap LJ, Riese H, Hudziak JJ et al (2014) Glucocorticoid receptor gene (NR3C1) methylation following stressful events between birth and adolescence. The TRAILS study. Transl Psychiatry 4:1–7Google Scholar
  118. Van Os J, Selten JP (1998) Prenatal exposure to maternal stress and subsequent schizophrenia. The May 1940 invasion of The Netherlands. Br J Psychiatry 172:324–326. doi: 10.1192/bjp.172.4.324 PubMedCrossRefGoogle Scholar
  119. Veru F, Laplante DP, Luheshi G, King S (2014) Prenatal maternal stress exposure and immune function in the offspring. Stress 17:133–148. doi: 10.3109/10253890.2013.876404 PubMedCrossRefGoogle Scholar
  120. Vidal AC, Neelon SEB, Liu Y et al (2014) Maternal stress, preterm birth, and DNA methylation at imprint regulatory sequences in humans. Genet Epigenet 6:37–44. doi: 10.4137/GEG.S18067 PubMedPubMedCentralCrossRefGoogle Scholar
  121. Vucetic Z, Kimmel J, Totoki K et al (2010) Maternal high-fat diet alters methylation and gene expression of dopamine and opioid-related genes. Endocrinology 151:4756–4764. doi: 10.1210/en.2010-0505 PubMedPubMedCentralCrossRefGoogle Scholar
  122. Wakschlag LS, Kistner EO, Pine DS et al (2010) Interaction of prenatal exposure to cigarettes and MAOA genotype in pathways to youth antisocial behavior. Mol Psychiatry 15:928–937. doi: 10.1038/mp.2009.22 PubMedCrossRefGoogle Scholar
  123. Weaver IC, Cervoni N, Champagne FA et al (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7:847–854PubMedCrossRefGoogle Scholar
  124. Weaver ICG, Meaney MJ, Szyf M (2006) Maternal care effects on the hippocampal transcriptome and anxiety-mediated behaviors in the offspring that are reversible in adulthood. Proc Natl Acad Sci USA 103:3480–3485. doi: 10.1073/pnas.0507526103 PubMedPubMedCentralCrossRefGoogle Scholar
  125. Wright RJ, Visness CM, Calatroni A et al (2010) Prenatal maternal stress and cord blood innate and adaptive cytokine responses in an inner-city cohort. Am J Respir Crit Care Med 182:25–33. doi: 10.1164/rccm.200904-0637OC PubMedPubMedCentralCrossRefGoogle Scholar
  126. Yehuda R (2005) Transgenerational effects of posttraumatic stress disorder in babies of mothers exposed to the world trade center attacks during pregnancy. J Clin Endocrinol Metab 90:4115–4118. doi: 10.1210/jc.2005-0550 PubMedCrossRefGoogle Scholar
  127. Yehuda R, Daskalakis NP, Desarnaud F et al (2013) Epigenetic biomarkers as predictors and correlates of symptom improvement following psychotherapy in combat veterans with PTSD. Front Psychiatry 4:118. doi: 10.3389/fpsyt.2013.00118 PubMedPubMedCentralCrossRefGoogle Scholar
  128. Yehuda R, Daskalakis NP, Lehrner A et al (2014) Influences of maternal and paternal PTSD on epigenetic regulation of the glucocorticoid receptor gene in holocaust survivor offspring. Am J Psychiatry 171:872–880. doi: 10.1176/appi.ajp.2014.13121571 PubMedPubMedCentralCrossRefGoogle Scholar
  129. Zohsel K, Buchmann AF, Blomeyer D et al (2014) Mothers’ prenatal stress and their children’s antisocial outcomes – a moderating role for the Dopamine D4 Receptor (DRD4) gene. J Child Psychol Psychiatry 55:69–76. doi: 10.1111/jcpp.12138 PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Fernanda Serpeloni
    • 1
    Email author
  • Karl M. Radtke
    • 1
    • 2
  • Tobias Hecker
    • 3
  • Thomas Elbert
    • 1
  1. 1.Clinical Psychology and Neuropsychology, Department of PsychologyUniversity of KonstanzKonstanzGermany
  2. 2.Evolutionary Biology and Zoology, Department of BiologyUniversity of KonstanzKonstanzGermany
  3. 3.Psychopathology and Clinical Intervention, Department of PsychologyUniversity of ZürichZürichSwitzerland

Personalised recommendations