Epigenetic Alterations to NR3C1 and HSD11B2 and the Developmental Origins of Mental Disease Risk

  • Allison A. AppletonEmail author
  • Elizabeth A. Holdsworth
  • Mary Elizabeth Ingle
Part of the Epigenetics and Human Health book series (EHH)


Gestation is one of the most critical periods of human development where adverse exposures occurring during pregnancy can shape the health of the offspring over the life course and contribute to the intergenerational transmission of disease risk. Many psychiatric conditions are now thought to originate in part in utero. As such, a myriad of gestational exposures may contribute to the biological embedding of poor mental health for the next generation. Increasingly, researchers are examining epigenetic alterations as mechanisms linking prenatal exposures to offspring mental disease risk. Epigenetic alterations, which can functionally regulate gene expression and thus phenotype, are tremendously sensitive to intrauterine exposures. Epigenetic mechanisms related to neuroendocrine regulation may be the linking mechanisms between adverse in utero exposures and later life poor mental health. This chapter reviews the evidence linking (1) prenatal exposures to epigenetic modification of genes involved in the regulation of cortisol (NR3C1 and HSD11B2) and (2) how such epigenetic alterations can in turn lead to changes in offspring mental disease risk.


Epigenetics HPA axis NR3C1 HSD11B2 Developmental origins of health and disease 


  1. Alati R, Lawlor DA, Mamun AA, Williams GM, Najman JM, O’Callaghan M, Bor W (2007) Is there a fetal origin of depression? Evidence from the Mater University Study of Pregnancy and its outcomes. Am J Epidemiol 165:575–582CrossRefPubMedGoogle Scholar
  2. Ananth CV, Keyes KM, Wapner RJ (2013) Pre-eclampsia rates in the United States, 1980–2010: age-period-cohort analysis. BMJ 347:f6564. doi: 10.1136/bmj.f6564 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Appleton AA, Armstrong DA, Lesseur C, Lee J, Padbury JF, Lester BM, Marsit CJ (2013) Patterning in placental 11-B hydroxysteroid dehydrogenase methylation according to prenatal socioeconomic adversity. PLoS One 8:e74691. doi: 10.1371/journal.pone.0074691 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Appleton AA, Lester BM, Armstrong DA, Lesseur C, Marsit CJ (2015) Examining the joint contribution of placental NR3C1 and HSD11B2 methylation for infant neurobehavior. Psychoneuroendocrinology 52:32–42. doi: 10.1016/j.psyneuen.2014.11.004 CrossRefPubMedGoogle Scholar
  5. Banerjee TD, Middleton F, Faraone SV (2007) Environmental risk factors for attention-deficit hyperactivity disorder. Acta Paediatr 96:1269–1274CrossRefPubMedGoogle Scholar
  6. Barker DJ (1998) In utero programming of chronic disease. Clin Sci 95:115–128CrossRefPubMedGoogle Scholar
  7. Bennett HA, Einarson A, Taddio A, Koren G, Einarson TR (2004) Prevalence of depression during pregnancy: systematic review. Obstet Gynecol 103:698–709. doi: 10.1097/01.AOG.0000116689.75396.5f CrossRefPubMedGoogle Scholar
  8. Ben-Shlomo Y, Kuh D (2002) A life course approach to chronic disease epidemiology: conceptual models, empirical challenges and interdisciplinary perspectives. Int J Epidemiol 31:285–293CrossRefPubMedGoogle Scholar
  9. Braithwaite EC, Kundakovic M, Ramchandani PG, Murphy SE, Champagne FA (2015) Maternal prenatal depressive symptoms predict infant NR3C1 1F and BDNF IV DNA methylation. Epigenetics 10:408–417. doi: 10.1080/15592294.2015.1039221 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Breton CV, Siegmund KD, Joubert BR et al (2014) Prenatal tobacco smoke exposure is associated with childhood DNA CpG methylation. PLoS One 9:e99716. doi: 10.1371/journal.pone.0099716 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bromer G, Marsit CJ, Armstrong DA, Padbury JF, Lester B (2012) Genetic and epigenetic variation in the glucocorticoid receptor (NR3C1) in placenta and infant neurobehavior. Dev Psychobiol. doi: 10.1002/dev.21061 PubMedPubMedCentralGoogle Scholar
  12. Bromer C, Marsit CJ, Armstrong DA, Padbury JF, Lester B (2013) Genetic and epigenetic variation of the glucocorticoid receptor (NR3C1) in placenta and infant neurobehavior. Dev Psychobiol 55:673–683. doi: 10.1002/dev.21061 PubMedGoogle Scholar
  13. Buka SL, Tsuang MT, Torrey EF, Klebanoff MA, Bernstein D, Yolken RH (2001) Maternal infections and subsequent psychosis among offspring. Arch Gen Psychiatry 58:1032–1037CrossRefPubMedGoogle Scholar
  14. Cannon TD, Rosso IM (2002) Levels of analysis in etiological research on schizophrenia. Dev Psychopathol 14:653–666CrossRefPubMedGoogle Scholar
  15. Cheng TF, Choudhuri S, Muldoon-Jacobs K (2012) Epigenetic targets of some toxicologically relevant metals: a review of the literature. J Appl Toxicol 32:643–653. doi: 10.1002/jat.2717 CrossRefPubMedGoogle Scholar
  16. Conradt E, Lester BM, Appleton AA, Armstrong DA, Marsit CJ (2013) The roles of DNA methylation of NR3C1 and 11beta-HSD2 and exposure to maternal mood disorder in utero on newborn neurobehavior. Epigenetics 8:1321–1329. doi: 10.4161/epi.26634 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Conradt E, Fei M, LaGasse L et al (2015) Prenatal predictors of infant self-regulation: the contributions of placental DNA methylation of NR3C1 and neuroendocrine activity. Front Behav Neurosci 9:130. doi: 10.3389/fnbeh.2015.00130 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Cottrell EC, Seckl JR (2009) Prenatal stress, glucocorticoids and the programming of adult disease. Front Behav Neurosci 3:1–9. doi: 10.3389/neuro.08.019.2009 CrossRefGoogle Scholar
  19. Gale CR, Martyn CN (2004) Birth weight and later risk of depression in a national birth cohort. Br J Psychiatry 184:28–33CrossRefPubMedGoogle Scholar
  20. Goodrich JM, Sanchez BN, Dolinoy DC et al (2015) Quality control and statistical modeling for environmental epigenetics: a study on in utero lead exposure and DNA methylation at birth. Epigenetics 10:19–30. doi: 10.4161/15592294.2014.989077 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hogg K, Blair JD, McFadden DE, von Dadelszen P, Robinson WP (2013) Early onset pre-eclampsia is associated with altered DNA methylation of cortisol-signalling and steroidogenic genes in the placenta. PLoS One 8:e62969. doi: 10.1371/journal.pone.0062969 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hompes T, Izzi B, Gellens E et al (2013) Investigating the influence of maternal cortisol and emotional state during pregnancy on the DNA methylation status of the glucocorticoid receptor gene (NR3C1) promoter region in cord blood. J Psychiatr Res 47:880–891. doi: 10.1016/j.jpsychires.2013.03.009 CrossRefPubMedGoogle Scholar
  23. Hu W, Weng X, Dong M, Liu Y, Li W, Huang H (2014) Alteration in methylation level at 11beta-hydroxysteroid dehydrogenase type 2 gene promoter in infants born to preeclamptic women. BMC Genet 15:96. doi: 10.1186/s12863-014-0096-5 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Januar V, Saffery R, Ryan J (2015) Epigenetics and depressive disorders: a review of current progress and future directions. Int J Epidemiol. doi: 10.1093/ije/dyu273 PubMedGoogle Scholar
  25. Lee AM, Lam SK, Sze Mun Lau SM, Chong CS, Chui HW, Fong DY (2007) Prevalence, course, and risk factors for antenatal anxiety and depression. Obstet Gynecol 110:1102–1112. doi: 10.1097/01.aog.0000287065.59491.70 CrossRefPubMedGoogle Scholar
  26. Lesseur C, Armstrong DA, Paquette AG, Koestler DC, Padbury JF, Marsit CJ (2013) Tissue-specific leptin promoter DNA methylation is associated with maternal and infant perinatal factors. Mol Cell Endocrinol 381:160–167. doi: 10.1016/j.mce.2013.07.024 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lesseur C, Armstrong DA, Murphy MA et al (2014a) Sex-specific associations between placental leptin promoter DNA methylation and infant neurobehavior. Psychoneuroendocrinology 40:1–9CrossRefPubMedGoogle Scholar
  28. Lesseur C, Armstrong DA, Paquette AG, Li Z, Padbury JF, Marsit CJ (2014b) Maternal obesity and gestational diabetes are associated with placental leptin DNA methylation. Am J Obstet Gynecol 211(654):e651–659. doi: 10.1016/j.ajog.2014.06.037 Google Scholar
  29. Lesseur C, Paquette AG, Marsit CJ (2014c) Epigenetic regulation of infant neurobehavioral outcomes. Med Epigenet 2:71–79. doi: 10.1159/000361026 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lester BM, Tronick EZ (2004a) History and description of the neonatal intensive care unit network neurobehavioral scale. Pediatrics 113:634–640PubMedGoogle Scholar
  31. Lester BM, Tronick EZ (2004b) The neonatal intensive care unit network neurobehavioral scale procedures. Pediatrics 113:641–667PubMedGoogle Scholar
  32. Lester BM, Tronick E, Nestler EJ et al (2011) Behavioral epigenetics. Ann N Y Acad Sci 1226:14–33CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lester BM, Conradt E, Marsit CJ (2013) Epigenetic basis for the development of depression in children. Clin Obstet Gynecol 56:556–565. doi: 10.1097/GRF.0b013e318299d2a8 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lester BM, Conradt E, Marsit CJ (2014) Are epigenetic changes in the intrauterine environment related to newborn neurobehavior? Epigenomics 6:175–178. doi: 10.2217/epi.14.9 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Liu J, Bann C, Lester B et al (2010) Neonatal neurobehavior predicts medical and behavioral outcome. Pediatrics 125:e90–e98. doi: 10.1542/peds.2009-0204 CrossRefPubMedGoogle Scholar
  36. Maccani JZ, Koestler DC, Lester B, Houseman EA, Armstrong DA, Kelsey KT, Marsit CJ (2015) Placental DNA methylation related to both infant toenail mercury and adverse neurobehavioral outcomes. Environ Health Perspect. doi: 10.1289/ehp.1408561 PubMedPubMedCentralGoogle Scholar
  37. Marques RC, Bernardi JV, Dorea JG, de Fatima RMM, Malm O (2014) Perinatal multiple exposure to neurotoxic (lead, methylmercury, ethylmercury, and aluminum) substances and neurodevelopment at six and 24 months of age. Environ Pollut 187:130–135. doi: 10.1016/j.envpol.2014.01.004 CrossRefPubMedGoogle Scholar
  38. Marsit CJ, Maccani MA, Padbury JF, Lester BM (2012) Placental 11-beta hydroxysteroid dehydrogenase methylation is associated with newborn growth and a measure of neurobehavioral outcome. PLoS One 7:e33794. doi: 10.1371/journal.pone.0033794 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Meaney MJ, Szyf M (2005) Environmental programming of stress responses through DNA methylation: life at the interface between a dynamic environment and a fixed genome. Dialogues Clin Neurosci 7:103–123PubMedPubMedCentralGoogle Scholar
  40. Monk C, Spicer J, Champagne FA (2012) Linking prenatal maternal adversity to developmental outcomes in infants: the role of epigenetic pathways. Dev Psychopathol 24:1361–1376. doi: 10.1017/s0954579412000764 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Mulligan CJ, D’Errico NC, Stees J, Hughes DA (2012) Methylation changes at NR3C1 in newborns associate with maternal prenatal stress exposure and newborn birth weight. Epigenetics 7:853–857CrossRefPubMedPubMedCentralGoogle Scholar
  42. Murgatroyd C, Quinn JP, Sharp HM, Pickles A, Hill J (2015) Effects of prenatal and postnatal depression, and maternal stroking, at the glucocorticoid receptor gene. Transl Psychiatry 5:e560. doi: 10.1038/tp.2014.140 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Oberlander TF, Weinberg J, Papsdorf M, Grunau R, Misri S, Devlin AM (2008) Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics 3:97–106CrossRefPubMedGoogle Scholar
  44. Paquette AG, Lesseur C, Armstrong DA, Koestler DC, Appleton AA, Lester BM, Marsit CJ (2013) Placental HTR2A methylation is associated with infant neurobehavioral outcomes. Epigenetics 8:796–801. doi: 10.4161/epi.25358 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Paquette AG, Lester BM, Koestler DC, Lesseur C, Armstrong DA, Marsit CJ (2014) Placental FKBP5 genetic and epigenetic variation is associated with infant neurobehavioral outcomes in the RICHS cohort. PLoS One 9:e104913. doi: 10.1371/journal.pone.0104913 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Peña CJ, Monk C, Champagne FA (2012) Epigenetic effects of prenatal stress on 11b-hydroxysteroid dehydrogenase-2 in the placenta and fetal brain. PLoS One 7:e39791. doi: 10.1371/journal.pone.0039791 CrossRefGoogle Scholar
  47. Perroud N, Rutembesa E, Paoloni-Giacobino A et al (2014) The Tutsi genocide and transgenerational transmission of maternal stress: epigenetics and biology of the HPA axis. World J Biol Psychiatry 15:334–345. doi: 10.3109/15622975.2013.866693 CrossRefPubMedGoogle Scholar
  48. Raikkonen K, Pesonen AK, Roseboom TJ, Eriksson JG (2012) Early determinants of mental health. Best Pract Res Clin Endocrinol Metab 26:599–611. doi: 10.1016/j.beem.2012.03.001 CrossRefPubMedGoogle Scholar
  49. Sandman CA, Davis EP (2012) Neurobehavioral risk is associated with gestational exposure to stress hormones. Expert Rev Endocrinol Metab 7:445–459. doi: 10.1586/eem.12.33 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Schlotz W, Phillips DIW (2009) Fetal origins of mental health: evidence and mechanisms. Brain Behav Immun 23:905–916. doi: 10.1016/j.bbi.2009.02.001 CrossRefPubMedGoogle Scholar
  51. Stephens BE, Liu J, Lester B et al (2010) Neurobehavioral assessment predicts motor outcome in preterm infants. J Pediatr 156:366–371. doi: 10.1016/j.jpeds.2009.09.042 CrossRefPubMedGoogle Scholar
  52. Stroud LR, Papandonatos GD, Rodriguez D et al (2014) Maternal smoking during pregnancy and infant stress response: test of a prenatal programming hypothesis. Psychoneuroendocrinology 48:29–40CrossRefPubMedPubMedCentralGoogle Scholar
  53. Tronick E, Lester BM (2013) Grandchild of the NBAS: the NICU network neurobehavioral scale (NNNS): a review of the research using the NNNS. J Child Adolesc Psychiatr Nurs 26:193–203. doi: 10.1111/jcap.12042 CrossRefPubMedGoogle Scholar
  54. van den Burg G, van Eijsden M, Virjkotte TGM, Gemke RJBJ (2012) Educational inequalities in perinatal outcomes: the mediating effect of smoking and environmental tobacco exposure. PLoS One 7:e37002. doi: 10.1371/journal.pone.0037002 CrossRefGoogle Scholar
  55. van Mil NH, Steegers-Theunissen RP, Bouwland-Both MI et al (2014) DNA methylation profiles at birth and child ADHD symptoms. J Psychiatr Res 49:51–59. doi: 10.1016/j.jpsychires.2013.10.017 CrossRefPubMedGoogle Scholar
  56. Weaver IC, Cervoni N, Champagne FA et al (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7:847–854. doi: 10.1038/nn1276 CrossRefPubMedGoogle Scholar
  57. Wyrwoll CS, Holmes MC, Seckl JR (2011) 11b-hydroxysteroid dehydrogenases and the brain: from zero to hero, a decade of progress. Front Neuroendocrinol 32:265–286CrossRefPubMedPubMedCentralGoogle Scholar
  58. Yehuda R, Daskalakis NP, Lehrner A et al (2014) Influences of maternal and paternal PTSD on epigenetic regulation of the glucocorticoid receptor gene in Holocaust survivor offspring. Am J Psychiatry 171:872–880. doi: 10.1176/appi.ajp.2014.13121571 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Zannas AS, Provencal N, Binder EB (2015) Epigenetics of posttraumatic stress disorder: current evidence, challenges, and future directions. Biol Psychiatry. doi: 10.1016/j.biopsych.2015.04.003 PubMedGoogle Scholar
  60. Zhao Y, Gong X, Chen L, Li L, Liang Y, Chen S, Zhang Y (2014) Site-specific methylation of placental HSD11B2 gene promoter is related to intrauterine growth restriction. Eur J Hum Genet 22:734–740. doi: 10.1038/ejhg.2013.226 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Allison A. Appleton
    • 1
    Email author
  • Elizabeth A. Holdsworth
    • 2
  • Mary Elizabeth Ingle
    • 1
  1. 1.Department of Epidemiology and Biostatistics, School of Public HealthUniversity at Albany State University of New YorkAlbanyUSA
  2. 2.Department of Anthropology, College of Arts and SciencesUniversity at Albany State University of New YorkAlbanyUSA

Personalised recommendations