Advertisement

Prodynorphin Epialleles

  • Igor BazovEmail author
  • Georgy Bakalkin
Chapter
Part of the Epigenetics and Human Health book series (EHH)

Abstract

Dynorphins, the endogenous ligands for kappa-opioid receptors play an essential role in neuroendocrine regulation, stress response, reward processing, and mood control. These neuropeptides induce strong dysphoric and aversive effects. Polymorphisms in the prodynorphin (PDYN), the dynorphin-encoding gene, are associated with substance addiction and negative craving, while dynorphin mutations cause neurodegeneration in the human brain. Similarly to other neuropeptide genes, PDYN is expressed in selective neural circuits at extremely low tissue levels. A sophisticated epigenetic/transcriptional regulation by cell lineage-specific transcription factors (TFs), insulators, and silencers such as CCCTC-binding factor (CTCF) and RE1-silencing transcription factor (REST) along with mechanisms that control neuronal activity-dependent transcription may define spatial, temporal, and adaptive PDYN expression patterns. Impairment of the epigenetic control of PDYN expression may contribute to human pathological conditions including substance dependence, depression, and chronic pain. Epigenetic and environmental factors may mechanistically converge on the PDYN CpG-SNPs associated with a risk for alcohol dependence, and the resulting methylation signals may be translated into disease predisposition via alterations in PDYN transcription. Understanding the mechanisms that regulate neuropeptide epigenome and transcriptome is essential for understanding of neuropeptide-mediated functional connectivity within neural circuits which activities define cognition and behavior.

Keywords

Neuropeptides Prodynorphin Transcription Epigenetics DNA methylation Human brain 

Notes

Acknowledgments

This work was supported by grants from the Swedish Council for Working Life and Social Research (FAS), Swedish Science Research Council (VR), and Swedish Research Council FORMAS to GB.

References

  1. Aldrich JV, McLaughlin JP (2009) Peptide kappa opioid receptor ligands: potential for drug development. AAPS J 11(2):312–322. doi: 10.1208/s12248-009-9105-4 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Altshuler HL, Phillips PE, Feinhandler DA (1980) Alteration of ethanol self-administration by naltrexone. Life Sci 26(9):679–688PubMedCrossRefGoogle Scholar
  3. Babbitt CC, Silverman JS, Haygood R, Reininga JM, Rockman MV, Wray GA (2010) Multiple functional variants in cis modulate PDYN expression. Mol Biol Evol 27(2):465–479. doi: 10.1093/molbev/msp276 PubMedCrossRefGoogle Scholar
  4. Bakalkin G, Yakovleva T, Terenius L (1994) Prodynorphin gene expression relates to NF-kappa B factors. Brain Res Mol Brain Res 24(1–4):301–312PubMedCrossRefGoogle Scholar
  5. Bakalkin G, Telkov M, Yakovleva T, Terenius L (1995) [Leu5]enkephalin-encoding sequences are targets for a specific DNA-binding factor. Proc Natl Acad Sci U S A 92(20):9024–9028PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bakalkin G, Yakovleva T, Terenius L (1997) The Leu-enkephalin-encoding sequence DNA-binding factor (LEF) is the transcription factor YY1. Biochem Biophys Res Commun 231(1):135–139. doi: 10.1006/bbrc.1997.6062 PubMedCrossRefGoogle Scholar
  7. Bakalkin G, Watanabe H, Jezierska J, Depoorter C, Verschuuren-Bemelmans C, Bazov I, Artemenko KA, Yakovleva T, Dooijes D, Van de Warrenburg BP, Zubarev RA, Kremer B, Knapp PE, Hauser KF, Wijmenga C, Nyberg F, Sinke RJ, Verbeek DS (2010) Prodynorphin mutations cause the neurodegenerative disorder spinocerebellar ataxia type 23. Am J Hum Genet 87(5):593–603. doi: 10.1016/j.ajhg.2010.10.001 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Ball MP, Li JB, Gao Y, Lee JH, LeProust EM, Park IH, Xie B, Daley GQ, Church GM (2009) Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat Biotechnol 27(4):361–368. doi: 10.1038/nbt.1533 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bargmann CI (2012) Beyond the connectome: how neuromodulators shape neural circuits. BioEssays 34(6):458–465. doi: 10.1002/bies.201100185 PubMedCrossRefGoogle Scholar
  10. Bargmann CI, Marder E (2013) From the connectome to brain function. Nat Methods 10(6):483–490PubMedCrossRefGoogle Scholar
  11. Bart G, Kreek MJ, Ott J, LaForge KS, Proudnikov D, Pollak L, Heilig M (2005) Increased attributable risk related to a functional mu-opioid receptor gene polymorphism in association with alcohol dependence in central Sweden. Neuropsychopharmacology 30(2):417–422. doi: 10.1038/sj.npp.1300598 PubMedCrossRefGoogle Scholar
  12. Bazov I, Kononenko O, Watanabe H, Taqi MMH, Gerashchenko G, Yakovleva T (2011) Bakalkin G epigenetic mechanism of endogenous opioid peptide precursor prodynorphin upregulation in the brain of human alcoholics: methylation of DNA in a single promoter nucleosome mediates USF2 effects. Society for Neuroscience Meeting, Washington, DCGoogle Scholar
  13. Bazov I, Kononenko O, Watanabe H, Kuntic V, Sarkisyan D, Taqi MM, Hussain MZ, Nyberg F, Yakovleva T, Bakalkin G (2013) The endogenous opioid system in human alcoholics: molecular adaptations in brain areas involved in cognitive control of addiction. Addict Biol 18(1):161–169. doi: 10.1111/j.1369-1600.2011.00366.x PubMedCrossRefGoogle Scholar
  14. Bilkei-Gorzo A, Erk S, Schurmann B, Mauer D, Michel K, Boecker H, Scheef L, Walter H, Zimmer A (2012) Dynorphins regulate fear memory: from mice to men. J Neurosci 32(27):9335–9343. doi: 10.1523/JNEUROSCI.1034-12.2012 PubMedCrossRefGoogle Scholar
  15. Bithell A (2011) REST: transcriptional and epigenetic regulator. Epigenomics 3(1):47–58. doi: 10.2217/epi.10.76 PubMedCrossRefGoogle Scholar
  16. Bodnar RJ (2013) Endogenous opiates and behavior: 2012. Peptides 50:55–95. doi: 10.1016/j.peptides.2013.10.001 PubMedCrossRefGoogle Scholar
  17. Bovo G, Diani E, Bisulli F, Di Bonaventura C, Striano P, Gambardella A, Ferlazzo E, Egeo G, Mecarelli O, Elia M, Bianchi A, Bortoluzzi S, Vettori A, Aguglia U, Binelli S, De Falco A, Coppola G, Gobbi G, Sofia V, Striano S, Tinuper P, Giallonardo AT, Michelucci R, Nobile C (2008) Analysis of LGI1 promoter sequence, PDYN and GABBR1 polymorphisms in sporadic and familial lateral temporal lobe epilepsy. Neurosci Lett 436(1):23–26. doi: 10.1016/j.neulet.2008.02.045 PubMedCrossRefGoogle Scholar
  18. Brohl D, Strehle M, Wende H, Hori K, Bormuth I, Nave KA, Muller T, Birchmeier C (2008) A transcriptional network coordinately determines transmitter and peptidergic fate in the dorsal spinal cord. Dev Biol 322(2):381–393. doi: 10.1016/j.ydbio.2008.08.002 PubMedCrossRefGoogle Scholar
  19. Bruce AW, Donaldson IJ, Wood IC, Yerbury SA, Sadowski MI, Chapman M, Gottgens B, Buckley NJ (2004) Genome-wide analysis of repressor element 1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) target genes. Proc Natl Acad Sci U S A 101(28):10458–10463. doi: 10.1073/pnas.0401827101 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bruchas MR, Chavkin C (2010) Kinase cascades and ligand-directed signaling at the kappa opioid receptor. Psychopharmacology (Berl) 210(2):137–147. doi: 10.1007/s00213-010-1806-y CrossRefGoogle Scholar
  21. Bruchas MR, Land BB, Chavkin C (2010) The dynorphin/kappa opioid system as a modulator of stress-induced and pro-addictive behaviors. Brain Res 1314:44–55. doi: 10.1016/j.brainres.2009.08.062 PubMedCrossRefGoogle Scholar
  22. Bruijnzeel AW (2009) Kappa-opioid receptor signaling and brain reward function. Brain Res Rev 62(1):127–146. doi: 10.1016/j.brainresrev.2009.09.008 PubMedPubMedCentralCrossRefGoogle Scholar
  23. Butelman ER, Yuferov V, Kreek MJ (2012) Kappa-opioid receptor/dynorphin system: genetic and pharmacotherapeutic implications for addiction. Trends Neurosci 35(10):587–596. doi: 10.1016/j.tins.2012.05.005 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Campos D, Jimenez-Diaz L, Carrion AM (2003) Ca(2+)-dependent prodynorphin transcriptional derepression in neuroblastoma cells is exerted through DREAM protein activity in a kinase-independent manner. Mol Cell Neurosci 22(2):135–145PubMedCrossRefGoogle Scholar
  25. Carlezon WA Jr, Beguin C, Knoll AT, Cohen BM (2009) Kappa-opioid ligands in the study and treatment of mood disorders. Pharmacol Ther 123(3):334–343. doi: 10.1016/j.pharmthera.2009.05.008 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Carninci P, Sandelin A, Lenhard B, Katayama S, Shimokawa K, Ponjavic J, Semple CA, Taylor MS, Engstrom PG, Frith MC, Forrest AR, Alkema WB, Tan SL, Plessy C, Kodzius R, Ravasi T, Kasukawa T, Fukuda S, Kanamori-Katayama M, Kitazume Y, Kawaji H, Kai C, Nakamura M, Konno H, Nakano K, Mottagui-Tabar S, Arner P, Chesi A, Gustincich S, Persichetti F, Suzuki H, Grimmond SM, Wells CA, Orlando V, Wahlestedt C, Liu ET, Harbers M, Kawai J, Bajic VB, Hume DA, Hayashizaki Y (2006) Genome-wide analysis of mammalian promoter architecture and evolution. Nat Genet 38(6):626–635. doi: 10.1038/ng1789 PubMedCrossRefGoogle Scholar
  27. Carrion AM, Mellstrom B, Naranjo JR (1998) Protein kinase A-dependent derepression of the human prodynorphin gene via differential binding to an intragenic silencer element. Mol Cell Biol 18(12):6921–6929PubMedPubMedCentralCrossRefGoogle Scholar
  28. Carrion AM, Link WA, Ledo F, Mellstrom B, Naranjo JR (1999) DREAM is a Ca2 + -regulated transcriptional repressor. Nature 398(6722):80–84. doi: 10.1038/18044 PubMedCrossRefGoogle Scholar
  29. Carroll SL, Schweitzer JB, Holtzman DM, Miller ML, Sclar GM, Milbrandt J (1995) Elements in the 5′ flanking sequences of the mouse low-affinity NGF receptor gene direct appropriate CNS, but not PNS, expression in transgenic mice. J Neurosci 15(5 Pt 1):3342–3356PubMedGoogle Scholar
  30. Chavkin C (2011) The therapeutic potential of kappa-opioids for treatment of pain and addiction. Neuropsychopharmacology 36(1):369–370. doi: 10.1038/npp.2010.137 PubMedCrossRefGoogle Scholar
  31. Chavkin C (2013) Dynorphin – still an extraordinarily potent opioid peptide. Mol Pharmacol 83(4):729–736. doi: 10.1124/mol.112.083337 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Chavkin C, James IF, Goldstein A (1982) Dynorphin is a specific endogenous ligand of the kappa opioid receptor. Science 215(4531):413–415PubMedCrossRefGoogle Scholar
  33. Chen AC, LaForge KS, Ho A, McHugh PF, Kellogg S, Bell K, Schluger RP, Leal SM, Kreek MJ (2002) Potentially functional polymorphism in the promoter region of prodynorphin gene may be associated with protection against cocaine dependence or abuse. Am J Med Genet 114(4):429–435. doi: 10.1002/ajmg.10362 PubMedCrossRefGoogle Scholar
  34. Cheng HY, Pitcher GM, Laviolette SR, Whishaw IQ, Tong KI, Kockeritz LK, Wada T, Joza NA, Crackower M, Goncalves J, Sarosi I, Woodgett JR, Oliveira-dos-Santos AJ, Ikura M, van der Kooy D, Salter MW, Penninger JM (2002) DREAM is a critical transcriptional repressor for pain modulation. Cell 108(1):31–43PubMedCrossRefGoogle Scholar
  35. Chin LS, Li L, Greengard P (1994) Neuron-specific expression of the synapsin II gene is directed by a specific core promoter and upstream regulatory elements. J Biol Chem 269(28):18507–18513PubMedGoogle Scholar
  36. Chong JA, Tapia-Ramirez J, Kim S, Toledo-Aral JJ, Zheng Y, Boutros MC, Altshuller YM, Frohman MA, Kraner SD, Mandel G (1995) REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell 80(6):949–957PubMedCrossRefGoogle Scholar
  37. Christie MJ (2008) Cellular neuroadaptations to chronic opioids: tolerance, withdrawal and addiction. Br J Pharmacol 154(2):384–396. doi: 10.1038/bjp.2008.100 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Cichelli MJ, Lewis MJ (2002) Naloxone nonselective suppression of drinking of ethanol, sucrose, saccharin, and water by rats. Pharmacol Biochem Behav 72(3):699–706PubMedCrossRefGoogle Scholar
  39. Cirulli ET, Goldstein DB (2007) In vitro assays fail to predict in vivo effects of regulatory polymorphisms. Hum Mol Genet 16(16):1931–1939. doi: 10.1093/hmg/ddm140 PubMedCrossRefGoogle Scholar
  40. Civelli O (2012) Orphan GPCRs and neuromodulation. Neuron 76(1):12–21. doi: 10.1016/j.neuron.2012.09.009 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Clarke TK, Krause K, Li T, Schumann G (2009) An association of prodynorphin polymorphisms and opioid dependence in females in a Chinese population. Addict Biol 14(3):366–370. doi: 10.1111/j.1369-1600.2009.00151.x PubMedCrossRefGoogle Scholar
  42. Clarke TK, Ambrose-Lanci L, Ferraro TN, Berrettini WH, Kampman KM, Dackis CA, Pettinati HM, O’Brien CP, Oslin DW, Lohoff FW (2012) Genetic association analyses of PDYN polymorphisms with heroin and cocaine addiction. Genes Brain Behav 11(4):415–423. doi: 10.1111/j.1601-183X.2012.00785.x PubMedCrossRefGoogle Scholar
  43. Cole RL, Konradi C, Douglass J, Hyman SE (1995) Neuronal adaptation to amphetamine and dopamine: molecular mechanisms of prodynorphin gene regulation in rat striatum. Neuron 14(4):813–823PubMedPubMedCentralCrossRefGoogle Scholar
  44. Coulson JM, Fiskerstrand CE, Woll PJ, Quinn JP (1999) Arginine vasopressin promoter regulation is mediated by a neuron-restrictive silencer element in small cell lung cancer. Cancer Res 59(20):5123–5127PubMedGoogle Scholar
  45. Coulson JM, Edgson JL, Woll PJ, Quinn JP (2000) A splice variant of the neuron-restrictive silencer factor repressor is expressed in small cell lung cancer: a potential role in derepression of neuroendocrine genes and a useful clinical marker. Cancer Res 60(7):1840–1844PubMedGoogle Scholar
  46. Dahl JP, Weller AE, Kampman KM, Oslin DW, Lohoff FW, Ferraro TN, O’Brien CP, Berrettini WH (2005) Confirmation of the association between a polymorphism in the promoter region of the prodynorphin gene and cocaine dependence. Am J Med Genet B Neuropsychiatr Genet 139B(1):106–108. doi: 10.1002/ajmg.b.30238 PubMedCrossRefGoogle Scholar
  47. Davidson D, Amit Z (1997) Effect of ethanol drinking and naltrexone on subsequent drinking in rats. Alcohol 14(6):581–584PubMedCrossRefGoogle Scholar
  48. Dayeh TA, Olsson AH, Volkov P, Almgren P, Ronn T, Ling C (2013) Identification of CpG-SNPs associated with type 2 diabetes and differential DNA methylation in human pancreatic islets. Diabetologia 56(5):1036–1046. doi: 10.1007/s00125-012-2815-7 PubMedPubMedCentralCrossRefGoogle Scholar
  49. de Kloet ER, Joels M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6(6):463–475. doi: 10.1038/nrn1683 PubMedCrossRefGoogle Scholar
  50. de Lanerolle NC, Williamson A, Meredith C, Kim JH, Tabuteau H, Spencer DD, Brines ML (1997) Dynorphin and the kappa 1 ligand [3H]U69,593 binding in the human epileptogenic hippocampus. Epilepsy Res 28(3):189–205PubMedCrossRefGoogle Scholar
  51. Deaton AM, Bird A (2011) CpG islands and the regulation of transcription. Genes Dev 25(10):1010–1022. doi: 10.1101/gad.2037511 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Deaton AM, Webb S, Kerr AR, Illingworth RS, Guy J, Andrews R, Bird A (2011) Cell type-specific DNA methylation at intragenic CpG islands in the immune system. Genome Res 21(7):1074–1086. doi: 10.1101/gr.118703.110 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Desmarais D, Filion M, Lapointe L, Royal A (1992) Cell-specific transcription of the peripherin gene in neuronal cell lines involves a cis-acting element surrounding the TATA box. EMBO J 11(8):2971–2980PubMedPubMedCentralGoogle Scholar
  54. Dong JM, Smith P, Hall C, Lim L (1995) Promoter region of the transcriptional unit for human alpha 1-chimaerin, a neuron-specific GTPase-activating protein for p21rac. Eur J Biochem/FEBS 227(3):636–646CrossRefGoogle Scholar
  55. Dores RM, Lee J, Sollars C, Danielson P, Lihrmann I, Vallarino M, Vaudry H (2000) In the african lungfish Met-enkephalin and leu-enkephalin are derived from separate genes: cloning of a proenkephalin cDNA. Neuroendocrinology 72(4):224–230. doi: 10.1159/000054591 PubMedCrossRefGoogle Scholar
  56. Douglass J, McMurray CT, Garrett JE, Adelman JP, Calavetta L (1989) Characterization of the rat prodynorphin gene. Mol Endocrinol 3(12):2070–2078. doi: 10.1210/mend-3-12-2070 PubMedCrossRefGoogle Scholar
  57. Douglass J, McKinzie AA, Pollock KM (1994) Identification of multiple DNA elements regulating basal and protein kinase A-induced transcriptional expression of the rat prodynorphin gene. Mol Endocrinol 8(3):333–344. doi: 10.1210/mend.8.3.8015551 PubMedGoogle Scholar
  58. Edenberg HJ, Wang J, Tian H, Pochareddy S, Xuei X, Wetherill L, Goate A, Hinrichs T, Kuperman S, Nurnberger JI Jr, Schuckit M, Tischfield JA, Foroud T (2008) A regulatory variation in OPRK1, the gene encoding the kappa-opioid receptor, is associated with alcohol dependence. Hum Mol Genet 17(12):1783–1789. doi: 10.1093/hmg/ddn068 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Fallon JH, Leslie FM (1986) Distribution of dynorphin and enkephalin peptides in the rat brain. J Comp Neurol 249(3):293–336. doi: 10.1002/cne.902490302 PubMedCrossRefGoogle Scholar
  60. Faruqi AF, Datta HJ, Carroll D, Seidman MM, Glazer PM (2000) Triple-helix formation induces recombination in mammalian cells via a nucleotide excision repair-dependent pathway. Mol Cell Biol 20(3):990–1000PubMedPubMedCentralCrossRefGoogle Scholar
  61. Feschotte C, Gilbert C (2012) Endogenous viruses: insights into viral evolution and impact on host biology. Nat Rev Genet 13(4):283–296. doi: 10.1038/nrg3199 PubMedCrossRefGoogle Scholar
  62. Gerstein MB, Kundaje A, Hariharan M, Landt SG, Yan KK, Cheng C, Mu XJ, Khurana E, Rozowsky J, Alexander R, Min R, Alves P, Abyzov A, Addleman N, Bhardwaj N, Boyle AP, Cayting P, Charos A, Chen DZ, Cheng Y, Clarke D, Eastman C, Euskirchen G, Frietze S, Fu Y, Gertz J, Grubert F, Harmanci A, Jain P, Kasowski M, Lacroute P, Leng J, Lian J, Monahan H, O’Geen H, Ouyang Z, Partridge EC, Patacsil D, Pauli F, Raha D, Ramirez L, Reddy TE, Reed B, Shi M, Slifer T, Wang J, Wu L, Yang X, Yip KY, Zilberman-Schapira G, Batzoglou S, Sidow A, Farnham PJ, Myers RM, Weissman SM, Snyder M (2012) Architecture of the human regulatory network derived from ENCODE data. Nature 489(7414):91–100. doi: 10.1038/nature11245 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Gillies S, Haddley K, Vasiliou S, Bubb VJ, Quinn JP (2009) The human neurokinin B gene, TAC3, and its promoter are regulated by Neuron Restrictive Silencing Factor (NRSF) transcription factor family. Neuropeptides 43(4):333–340. doi: 10.1016/j.npep.2009.05.004 PubMedCrossRefGoogle Scholar
  64. Gogvadze E, Buzdin A (2009) Retroelements and their impact on genome evolution and functioning. Cell Mol Life Sci 66(23):3727–3742. doi: 10.1007/s00018-009-0107-2 PubMedCrossRefGoogle Scholar
  65. Gohler T, Reimann M, Cherny D, Walter K, Warnecke G, Kim E, Deppert W (2002) Specific interaction of p53 with target binding sites is determined by DNA conformation and is regulated by the C-terminal domain. J Biol Chem 277(43):41192–41203. doi: 10.1074/jbc.M202344200 PubMedCrossRefGoogle Scholar
  66. Hall FS, Sora I, Uhl GR (2001) Ethanol consumption and reward are decreased in mu-opiate receptor knockout mice. Psychopharmacology (Berl) 154(1):43–49CrossRefGoogle Scholar
  67. Harrison LM, Kastin AJ, Zadina JE (1998) Opiate tolerance and dependence: receptors, G-proteins, and antiopiates. Peptides 19(9):1603–1630PubMedCrossRefGoogle Scholar
  68. Hellman A, Chess A (2010) Extensive sequence-influenced DNA methylation polymorphism in the human genome. Epigenetics Chromatin 3(1):11. doi: 10.1186/1756-8935-3-11 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Henriksson R, Backman CM, Harvey BK, Kadyrova H, Bazov I, Shippenberg TS, Bakalkin G (2014) PDYN, a gene implicated in brain/mental disorders, is targeted by REST in the adult human brain. Biochim Biophys Acta 1839(11):1226–1232. doi: 10.1016/j.bbagrm.2014.09.001 PubMedCrossRefGoogle Scholar
  70. Herkenham M (1987) Mismatches between neurotransmitter and receptor localizations in brain: observations and implications. Neuroscience 23(1):1–38PubMedCrossRefGoogle Scholar
  71. Hernandez M, Wright SD, Cai TQ (2007) Critical role of cholesterol ester transfer protein in nicotinic acid-mediated HDL elevation in mice. Biochem Biophys Res Commun 355(4):1075–1080. doi: 10.1016/j.bbrc.2007.02.079 PubMedCrossRefGoogle Scholar
  72. Hokfelt T, Holets VR, Staines W, Meister B, Melander T, Schalling M, Schultzberg M, Freedman J, Bjorklund H, Olson L et al (1986) Coexistence of neuronal messengers – an overview. Prog Brain Res 68:33–70PubMedCrossRefGoogle Scholar
  73. Hokfelt T, Meister B, Villar MJ, Ceccatelli S, Corts R, Schalling M, Everitt B (1990) Colocalization of messenger substances with special reference to the hypothalamic arcuate and paraventricular nuclei. Prog Clin Biol Res 342:257–264PubMedGoogle Scholar
  74. Hokfelt T, Broberger C, Xu ZQ, Sergeyev V, Ubink R, Diez M (2000) Neuropeptides – an overview. Neuropharmacology 39(8):1337–1356PubMedCrossRefGoogle Scholar
  75. Holden JE, Jeong Y, Forrest JM (2005) The endogenous opioid system and clinical pain management. AACN Clin Issues 16(3):291–301PubMedCrossRefGoogle Scholar
  76. Holohan KN, Lahiri DK, Schneider BP, Foroud T, Saykin AJ (2012) Functional microRNAs in Alzheimer’s disease and cancer: differential regulation of common mechanisms and pathways. Front Genet 3:323. doi: 10.3389/fgene.2012.00323 PubMedGoogle Scholar
  77. Hou C, Zhao H, Tanimoto K, Dean A (2008) CTCF-dependent enhancer-blocking by alternative chromatin loop formation. Proc Natl Acad Sci U S A 105(51):20398–20403. doi: 10.1073/pnas.0808506106 PubMedPubMedCentralCrossRefGoogle Scholar
  78. Hoyle GW, Mercer EH, Palmiter RD, Brinster RL (1994) Cell-specific expression from the human dopamine beta-hydroxylase promoter in transgenic mice is controlled via a combination of positive and negative regulatory elements. J Neurosci 14(5 Pt 1):2455–2463PubMedGoogle Scholar
  79. Huang M, Huang T, Xiang Y, Xie Z, Chen Y, Yan R, Xu J, Cheng L (2008) Ptf1a, Lbx1 and Pax2 coordinate glycinergic and peptidergic transmitter phenotypes in dorsal spinal inhibitory neurons. Dev Biol 322(2):394–405. doi: 10.1016/j.ydbio.2008.06.031 PubMedCrossRefGoogle Scholar
  80. Hurd YL (1996) Differential messenger RNA expression of prodynorphin and proenkephalin in the human brain. Neuroscience 72(3):767–783. doi: 10.1016/0306-4522(96)00002-4 PubMedCrossRefGoogle Scholar
  81. Jezierska J, Stevanin G, Watanabe H, Fokkens MR, Zagnoli F, Kok J, Goas JY, Bertrand P, Robin C, Brice A, Bakalkin G, Durr A, Verbeek DS (2013) Identification and characterization of novel PDYN mutations in dominant cerebellar ataxia cases. J Neurol 260(7):1807–1812. doi: 10.1007/s00415-013-6882-6 PubMedCrossRefGoogle Scholar
  82. Jin P, Duan R, Qurashi A, Qin Y, Tian D, Rosser TC, Liu H, Feng Y, Warren ST (2007) Pur alpha binds to rCGG repeats and modulates repeat-mediated neurodegeneration in a Drosophila model of fragile X tremor/ataxia syndrome. Neuron 55(4):556–564. doi: 10.1016/j.neuron.2007.07.020 PubMedPubMedCentralCrossRefGoogle Scholar
  83. Johnson DS, Mortazavi A, Myers RM, Wold B (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316(5830):1497–1502. doi: 10.1126/science.1141319 PubMedCrossRefGoogle Scholar
  84. Jones PA (1999) The DNA methylation paradox. Trends Genet 15(1):34–37PubMedCrossRefGoogle Scholar
  85. Kardon AP, Polgar E, Hachisuka J, Snyder LM, Cameron D, Savage S, Cai X, Karnup S, Fan CR, Hemenway GM, Bernard CS, Schwartz ES, Nagase H, Schwarzer C, Watanabe M, Furuta T, Kaneko T, Koerber HR, Todd AJ, Ross SE (2014) Dynorphin acts as a neuromodulator to inhibit itch in the dorsal horn of the spinal cord. Neuron 82(3):573–586. doi: 10.1016/j.neuron.2014.02.046 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Karpyak VM, Winham SJ, Preuss UW, Zill P, Cunningham JM, Walker DL, Lewis KA, Geske JR, Colby CL, Abulseoud OA, Hall-Flavin DK, Loukianova LL, Schneekloth TD, Frye MA, Bazov I, Heit JA, Bakalkin G, Mrazek DA, Biernacka JM (2013) Association of the PDYN gene with alcohol dependence and the propensity to drink in negative emotional states. Int J Neuropsychopharmacol 16(5):975–985. doi: 10.1017/S1461145712001137 PubMedCrossRefGoogle Scholar
  87. Kaynard AH, McMurray CT, Douglass J, Curry TE Jr, Melner MH (1992) Regulation of prodynorphin gene expression in the ovary: distal DNA regulatory elements confer gonadotropin regulation of promoter activity. Mol Endocrinol 6(12):2244–2256. doi: 10.1210/mend.6.12.1337148 PubMedGoogle Scholar
  88. Kennedy GC, German MS, Rutter WJ (1995) The minisatellite in the diabetes susceptibility locus IDDM2 regulates insulin transcription. Nat Genet 9(3):293–298. doi: 10.1038/ng0395-293 PubMedCrossRefGoogle Scholar
  89. Knight JC (2005) Regulatory polymorphisms underlying complex disease traits. J Mol Med 83(2):97–109. doi: 10.1007/s00109-004-0603-7 PubMedCrossRefGoogle Scholar
  90. Knoll AT, Carlezon WA Jr (2010) Dynorphin, stress, and depression. Brain Res 1314:56–73. doi: 10.1016/j.brainres.2009.09.074 PubMedCrossRefGoogle Scholar
  91. Kolsch H, Wagner M, Bilkei-Gorzo A, Toliat MR, Pentzek M, Fuchs A, Kaduszkiewicz H, van den Bussche H, Riedel-Heller SG, Angermeyer MC, Weyerer S, Werle J, Bickel H, Mosch E, Wiese B, Daerr M, Jessen F, Maier W, Dichgans M (2009) Gene polymorphisms in prodynorphin (PDYN) are associated with episodic memory in the elderly. J Neural Transm 116(7):897–903. doi: 10.1007/s00702-009-0238-5 PubMedCrossRefGoogle Scholar
  92. Koob GF, Le Moal M (2005) Plasticity of reward neurocircuitry and the ‘dark side’ of drug addiction. Nat Neurosci 8(11):1442–1444. doi: 10.1038/nn1105-1442 PubMedCrossRefGoogle Scholar
  93. Kraner SD, Chong JA, Tsay HJ, Mandel G (1992) Silencing the type II sodium channel gene: a model for neural-specific gene regulation. Neuron 9(1):37–44PubMedCrossRefGoogle Scholar
  94. Krasilnikov AS, Podtelezhnikov A, Vologodskii A, Mirkin SM (1999) Large-scale effects of transcriptional DNA supercoiling in vivo. J Mol Biol 292(5):1149–1160. doi: 10.1006/jmbi.1999.3117 PubMedCrossRefGoogle Scholar
  95. Kuwabara T, Hsieh J, Nakashima K, Warashina M, Taira K, Gage FH (2005) The NRSE smRNA specifies the fate of adult hippocampal neural stem cells. Nucleic Acids Symp Ser 49:87–88. doi: 10.1093/nass/49.1.87 CrossRefGoogle Scholar
  96. Lada AG, Waisertreiger IS, Grabow CE, Prakash A, Borgstahl GE, Rogozin IB, Pavlov YI (2011) Replication protein A (RPA) hampers the processive action of APOBEC3G cytosine deaminase on single-stranded DNA. PLoS One 6(9):e24848. doi: 10.1371/journal.pone.0024848 PubMedPubMedCentralCrossRefGoogle Scholar
  97. Land BB, Bruchas MR, Lemos JC, Xu M, Melief EJ, Chavkin C (2008) The dysphoric component of stress is encoded by activation of the dynorphin kappa-opioid system. J Neurosci 28(2):407–414. doi: 10.1523/JNEUROSCI.4458-07.2008 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Ledo F, Carrion AM, Link WA, Mellstrom B, Naranjo JR (2000) DREAM-alphaCREM interaction via leucine-charged domains derepresses downstream regulatory element-dependent transcription. Mol Cell Biol 20(24):9120–9126PubMedPubMedCentralCrossRefGoogle Scholar
  99. Li L, Suzuki T, Mori N, Greengard P (1993) Identification of a functional silencer element involved in neuron-specific expression of the synapsin I gene. Proc Natl Acad Sci U S A 90(4):1460–1464PubMedPubMedCentralCrossRefGoogle Scholar
  100. Li Y, Liu Q, Yang Y, Lv Y, Chen L, Bai C, Nan X, Wang Y, Pei X (2008) Regulatory role of neuron-restrictive silencing factor in the specific expression of cocaine- and amphetamine-regulated transcript gene. J Neurochem 106(3):1314–1324. doi: 10.1111/j.1471-4159.2008.05487.x PubMedCrossRefGoogle Scholar
  101. Li X, Marchant NJ, Shaham Y (2014) Opposing roles of cotransmission of dynorphin and hypocretin on reward and motivation. Proc Natl Acad Sci U S A 111(16):5765–5766. doi: 10.1073/pnas.1403603111 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Lizio M, Harshbarger J, Shimoji H, Severin J, Kasukawa T, Sahin S, Abugessaisa I, Fukuda S, Hori F, Ishikawa-Kato S, Mungall CJ, Arner E, Baillie JK, Bertin N, Bono H, de Hoon M, Diehl AD, Dimont E, Freeman TC, Fujieda K, Hide W, Kaliyaperumal R, Katayama T, Lassmann T, Meehan TF, Nishikata K, Ono H, Rehli M, Sandelin A, Schultes EA, t Hoen PA, Tatum Z, Thompson M, Toyoda T, Wright DW, Daub CO, Itoh M, Carninci P, Hayashizaki Y, Forrest AR, Kawaji H, FANTOM Consortium (2015) Gateways to the FANTOM5 promoter level mammalian expression atlas. Genome Biol 16:22. doi: 10.1186/s13059-014-0560-6 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Logrip ML, Janak PH, Ron D (2009) Blockade of ethanol reward by the kappa opioid receptor agonist U50,488H. Alcohol 43(5):359–365. doi: 10.1016/j.alcohol.2009.05.001 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Lonnerberg P, Schoenherr CJ, Anderson DJ, Ibanez CF (1996) Cell type-specific regulation of choline acetyltransferase gene expression. Role of the neuron-restrictive silencer element and cholinergic-specific enhancer sequences. J Biol Chem 271(52):33358–33365PubMedCrossRefGoogle Scholar
  105. Lu KM, Evans SM, Hirano S, Liu FC (2014a) Dual role for Islet-1 in promoting striatonigral and repressing striatopallidal genetic programs to specify striatonigral cell identity. Proc Natl Acad Sci U S A 111(1):E168–E177. doi: 10.1073/pnas.1319138111 PubMedCrossRefGoogle Scholar
  106. Lu T, Aron L, Zullo J, Pan Y, Kim H, Chen Y, Yang TH, Kim HM, Drake D, Liu XS, Bennett DA, Colaiacovo MP, Yankner BA (2014b) REST and stress resistance in ageing and Alzheimer’s disease. Nature 507(7493):448–454. doi: 10.1038/nature13163 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Ludwig M, Leng G (2006) Dendritic peptide release and peptide-dependent behaviours. Nat Rev Neurosci 7(2):126–136. doi: 10.1038/nrn1845 PubMedCrossRefGoogle Scholar
  108. Ludwig M, Sabatier N, Bull PM, Landgraf R, Dayanithi G, Leng G (2002) Intracellular calcium stores regulate activity-dependent neuropeptide release from dendrites. Nature 418(6893):85–89. doi: 10.1038/nature00822 PubMedCrossRefGoogle Scholar
  109. Ludwig M, Bull PM, Tobin VA, Sabatier N, Landgraf R, Dayanithi G, Leng G (2005) Regulation of activity-dependent dendritic vasopressin release from rat supraoptic neurones. J Physiol 564(Pt 2):515–522. doi: 10.1113/jphysiol.2005.083931 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Lunyak VV, Rosenfeld MG (2005) No rest for REST: REST/NRSF regulation of neurogenesis. Cell 121(4):499–501. doi: 10.1016/j.cell.2005.05.003 PubMedCrossRefGoogle Scholar
  111. Mague SD, Pliakas AM, Todtenkopf MS, Tomasiewicz HC, Zhang Y, Stevens WC Jr, Jones RM, Portoghese PS, Carlezon WA Jr (2003) Antidepressant-like effects of kappa-opioid receptor antagonists in the forced swim test in rats. J Pharmacol Exp Ther 305(1):323–330. doi: 10.1124/jpet.102.046433 PubMedCrossRefGoogle Scholar
  112. Majumder P, Gomez JA, Chadwick BP, Boss JM (2008) The insulator factor CTCF controls MHC class II gene expression and is required for the formation of long-distance chromatin interactions. J Exp Med 205(4):785–798. doi: 10.1084/jem.20071843 PubMedPubMedCentralCrossRefGoogle Scholar
  113. Marder E (2012) Neuromodulation of neuronal circuits: back to the future. Neuron 76(1):1–11. doi: 10.1016/j.neuron.2012.09.010 PubMedPubMedCentralCrossRefGoogle Scholar
  114. Martin-Kleiner I, Balog T, Gabrilovac J (2006) Signal transduction induced by opioids in immune cells: a review. Neuroimmunomodulation 13(1):1–7. doi: 10.1159/000092107 PubMedCrossRefGoogle Scholar
  115. Mattick JS (2001) Non-coding RNAs: the architects of eukaryotic complexity. EMBO Rep 2(11):986–991. doi: 10.1093/embo-reports/kve230 PubMedPubMedCentralCrossRefGoogle Scholar
  116. Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, Fouse SD, Johnson BE, Hong C, Nielsen C, Zhao Y, Turecki G, Delaney A, Varhol R, Thiessen N, Shchors K, Heine VM, Rowitch DH, Xing X, Fiore C, Schillebeeckx M, Jones SJ, Haussler D, Marra MA, Hirst M, Wang T, Costello JF (2010) Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466(7303):253–257. doi: 10.1038/nature09165 PubMedPubMedCentralCrossRefGoogle Scholar
  117. Maximyuk O, Khmyz V, Lindskog CJ, Vukojevic V, Ivanova T, Bazov I, Hauser KF, Bakalkin G, Krishtal O (2015) Plasma membrane poration by opioid neuropeptides: a possible mechanism of pathological signal transduction. Cell Death Dis 6:e1683. doi: 10.1038/cddis.2015.39 PubMedPubMedCentralCrossRefGoogle Scholar
  118. McLaughlin JP, Marton-Popovici M, Chavkin C (2003) Kappa opioid receptor antagonism and prodynorphin gene disruption block stress-induced behavioral responses. J Neurosci 23(13):5674–5683PubMedPubMedCentralGoogle Scholar
  119. Mendelson SC, Morrison CF, McAllister J, Paterson JM, Dobson SP, Mulderry PK, Quinn JP (1995) Repression of preprotachykinin-A promoter activity is mediated by a proximal promoter element. Neuroscience 65(3):837–847PubMedCrossRefGoogle Scholar
  120. Merchenthaler I, Maderdrut JL, Cianchetta P, Shughrue P, Bronstein D (1997) In situ hybridization histochemical localization of prodynorphin messenger RNA in the central nervous system of the rat. J Comp Neurol 384(2):211–232PubMedCrossRefGoogle Scholar
  121. Messersmith DJ, Gu J, Dubner R, Douglass J, Iadarola MJ (1994) Basal and inducible transcriptional activity of an upstream AP-1/CRE element (DYNCRE3) in the prodynorphin promoter. Mol Cell Neurosci 5(3):238–245. doi: 10.1006/mcne.1994.1028 PubMedCrossRefGoogle Scholar
  122. Messersmith DJ, Kim DJ, Gu J, Dubner R, Iadarola MJ (1996) c-Jun activation of the DYNCRE3 site in the prodynorphin promoter. Brain Res Mol Brain Res 40(1):15–21PubMedCrossRefGoogle Scholar
  123. Mika J, Obara I, Przewlocka B (2011) The role of nociceptin and dynorphin in chronic pain: implications of neuro-glial interaction. Neuropeptides 45(4):247–261. doi: 10.1016/j.npep.2011.03.002 PubMedCrossRefGoogle Scholar
  124. Mill J, Petronis A (2007) Molecular studies of major depressive disorder: the epigenetic perspective. Mol Psychiatry 12(9):799–814. doi: 10.1038/sj.mp.4001992 PubMedCrossRefGoogle Scholar
  125. Moen EL, Zhang X, Mu W, Delaney SM, Wing C, McQuade J, Myers J, Godley LA, Dolan ME, Zhang W (2013) Genome-wide variation of cytosine modifications between European and African populations and the implications for complex traits. Genetics 194(4):987–996. doi: 10.1534/genetics.113.151381 PubMedPubMedCentralCrossRefGoogle Scholar
  126. Morris BJ, Haarmann I, Kempter B, Hollt V, Herz A (1986) Localization of prodynorphin messenger-Rna in rat-brain by insitu hybridization using a synthetic oligonucleotide probe. Neurosci Lett 69(1):104–108. doi: 10.1016/0304-3940(86)90423-4 PubMedCrossRefGoogle Scholar
  127. Muschamp JW, Hollander JA, Thompson JL, Voren G, Hassinger LC, Onvani S, Kamenecka TM, Borgland SL, Kenny PJ, Carlezon WA Jr (2014) Hypocretin (orexin) facilitates reward by attenuating the antireward effects of its cotransmitter dynorphin in ventral tegmental area. Proc Natl Acad Sci U S A 111(16):E1648–E1655. doi: 10.1073/pnas.1315542111 PubMedPubMedCentralCrossRefGoogle Scholar
  128. Myers RD, Borg S, Mossberg R (1986) Antagonism by naltrexone of voluntary alcohol selection in the chronically drinking macaque monkey. Alcohol 3(6):383–388PubMedCrossRefGoogle Scholar
  129. Napierala M, Parniewski P, Pluciennik A, Wells RD (2002) Long CTG.CAG repeat sequences markedly stimulate intramolecular recombination. J Biol Chem 277(37):34087–34100. doi: 10.1074/jbc.M202128200 PubMedCrossRefGoogle Scholar
  130. Naranjo JR, Mellstrom B, Achaval M, Sassone-Corsi P (1991) Molecular pathways of pain: Fos/Jun-mediated activation of a noncanonical AP-1 site in the prodynorphin gene. Neuron 6(4):607–617PubMedCrossRefGoogle Scholar
  131. Nassel DR (2009) Neuropeptide signaling near and far: how localized and timed is the action of neuropeptides in brain circuits? Invert Neurosci 9(2):57–75. doi: 10.1007/s10158-009-0090-1 PubMedCrossRefGoogle Scholar
  132. Nathoo AN, Moeller RA, Westlund BA, Hart AC (2001) Identification of neuropeptide-like protein gene families in Caenorhabditiselegans and other species. Proc Natl Acad Sci U S A 98(24):14000–14005. doi: 10.1073/pnas.241231298 PubMedPubMedCentralCrossRefGoogle Scholar
  133. Nguyen C, Liang G, Nguyen TT, Tsao-Wei D, Groshen S, Lubbert M, Zhou JH, Benedict WF, Jones PA (2001) Susceptibility of nonpromoter CpG islands to de novo methylation in normal and neoplastic cells. J Natl Cancer Inst 93(19):1465–1472PubMedCrossRefGoogle Scholar
  134. Nikoshkov A, Hurd YL, Yakovleva T, Bazov I, Marinova Z, Cebers G, Pasikova N, Gharibyan A, Terenius L, Bakalkin G (2005) Prodynorphin transcripts and proteins differentially expressed and regulated in the adult human brain. FASEB J 19(11):1543–1545. doi: 10.1096/fj.05-3743fje PubMedGoogle Scholar
  135. Nikoshkov A, Drakenberg K, Wang X, Horvath MC, Keller E, Hurd YL (2008) Opioid neuropeptide genotypes in relation to heroin abuse: dopamine tone contributes to reversed mesolimbic proenkephalin expression. Proc Natl Acad Sci U S A 105(2):786–791. doi: 10.1073/pnas.0710902105 PubMedPubMedCentralCrossRefGoogle Scholar
  136. Nogueiras R, Romero-Pico A, Vazquez MJ, Novelle MG, Lopez M, Dieguez C (2012) The opioid system and food intake: homeostatic and hedonic mechanisms. Obes Facts 5(2):196–207. doi: 10.1159/000338163 PubMedCrossRefGoogle Scholar
  137. Nomura A, Ujike H, Tanaka Y, Otani K, Morita Y, Kishimoto M, Morio A, Harano M, Inada T, Yamada M, Komiyama T, Sekine Y, Iwata N, Sora I, Iyo M, Ozaki N, Kuroda S (2006) Genetic variant of prodynorphin gene is risk factor for methamphetamine dependence. Neurosci Lett 400(1–2):158–162. doi: 10.1016/j.neulet.2006.02.038 PubMedCrossRefGoogle Scholar
  138. Oertel BG, Doehring A, Roskam B, Kettner M, Hackmann N, Ferreiros N, Schmidt PH, Lotsch J (2012) Genetic-epigenetic interaction modulates mu-opioid receptor regulation. Hum Mol Genet 21(21):4751–4760. doi: 10.1093/hmg/dds314 PubMedCrossRefGoogle Scholar
  139. Ooi L, Wood IC (2007) Chromatin crosstalk in development and disease: lessons from REST. Nat Rev Genet 8(7):544–554. doi: 10.1038/nrg2100 PubMedCrossRefGoogle Scholar
  140. Oslin DW, Berrettini W, Kranzler HR, Pettinati H, Gelernter J, Volpicelli JR, O’Brien CP (2003) A functional polymorphism of the mu-opioid receptor gene is associated with naltrexone response in alcohol-dependent patients. Neuropsychopharmacology 28(8):1546–1552. doi: 10.1038/sj.npp.1300219 PubMedCrossRefGoogle Scholar
  141. Ossipov MH, Bazov I, Gardell LR, Kowal J, Yakovleva T, Usynin I, Ekstrom TJ, Porreca F, Bakalkin G (2007) Control of chronic pain by the ubiquitin proteasome system in the spinal cord. J Neurosci 27(31):8226–8237. doi: 10.1523/JNEUROSCI.5126-06.2007 PubMedCrossRefGoogle Scholar
  142. Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A, Takemoto M, Kawakami B, Yamazaki M, Watanabe K, Kumagai A, Itakura S, Fukuzumi Y, Fujimori Y, Komiyama M, Tashiro H, Tanigami A, Fujiwara T, Ono T, Yamada K, Fujii Y, Ozaki K, Hirao M, Ohmori Y, Kawabata A, Hikiji T, Kobatake N, Inagaki H, Ikema Y, Okamoto S, Okitani R, Kawakami T, Noguchi S, Itoh T, Shigeta K, Senba T, Matsumura K, Nakajima Y, Mizuno T, Morinaga M, Sasaki M, Togashi T, Oyama M, Hata H, Watanabe M, Komatsu T, Mizushima-Sugano J, Satoh T, Shirai Y, Takahashi Y, Nakagawa K, Okumura K, Nagase T, Nomura N, Kikuchi H, Masuho Y, Yamashita R, Nakai K, Yada T, Nakamura Y, Ohara O, Isogai T, Sugano S (2004) Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet 36(1):40–45. doi: 10.1038/ng1285 PubMedCrossRefGoogle Scholar
  143. Packer AN, Xing Y, Harper SQ, Jones L, Davidson BL (2008) The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington’s disease. J Neurosci 28(53):14341–14346. doi: 10.1523/JNEUROSCI.2390-08.2008 PubMedPubMedCentralCrossRefGoogle Scholar
  144. Park JH, Lee J, Kim CH, Lee S (2014) The polymorphism (−600 C > A) of CpG methylation site at the promoter region of CYP17A1 and its association of male infertility and testosterone levels. Gene 534(1):107–112. doi: 10.1016/j.gene.2013.09.088 PubMedCrossRefGoogle Scholar
  145. Patel SS, Pandey M, Nandakumar D (2011) Dynamic coupling between the motors of DNA replication: hexameric helicase, DNA polymerase, and primase. Curr Opin Chem Biol 15(5):595–605. doi: 10.1016/j.cbpa.2011.08.003 PubMedPubMedCentralCrossRefGoogle Scholar
  146. Pattee P, Ilie AE, Benyhe S, Toth G, Borsodi A, Nagalla SR (2003) Cloning and characterization of Xen-dorphin prohormone from Xenopus laevis: a new opioid-like prohormone distinct from proenkephalin and prodynorphin. J Biol Chem 278(52):53098–53104. doi: 10.1074/jbc.M306724200 PubMedCrossRefGoogle Scholar
  147. Pearson CE, Zorbas H, Price GB, Zannis-Hadjopoulos M (1996) Inverted repeats, stem-loops, and cruciforms: significance for initiation of DNA replication. J Cell Biochem 63(1):1–22. doi: 10.1002/(SICI)1097-4644(199610)63:1<1::AID-JCB1>3.0.CO;2-3 PubMedCrossRefGoogle Scholar
  148. Pfeiffer A, Brantl V, Herz A, Emrich HM (1986) Psychotomimesis mediated by kappa opiate receptors. Science 233(4765):774–776PubMedCrossRefGoogle Scholar
  149. Pradhan AA, Smith ML, Kieffer BL, Evans CJ (2012) Ligand-directed signalling within the opioid receptor family. Br J Pharmacol 167(5):960–969. doi: 10.1111/j.1476-5381.2012.02075.x PubMedPubMedCentralCrossRefGoogle Scholar
  150. Przewlocki R (2004) Opioid abuse and brain gene expression. Eur J Pharmacol 500(1–3):331–349. doi: 10.1016/j.ejphar.2004.07.036 PubMedCrossRefGoogle Scholar
  151. Przewlocki R, Przewlocka B (2001) Opioids in chronic pain. Eur J Pharmacol 429(1–3):79–91PubMedCrossRefGoogle Scholar
  152. Pun FW, Zhao C, Lo WS, Ng SK, Tsang SY, Nimgaonkar V, Chung WS, Ungvari GS, Xue H (2011) Imprinting in the schizophrenia candidate gene GABRB2 encoding GABA(A) receptor beta(2) subunit. Mol Psychiatry 16(5):557–568. doi: 10.1038/mp.2010.47 PubMedCrossRefGoogle Scholar
  153. Ramchandani VA, Umhau J, Pavon FJ, Ruiz-Velasco V, Margas W, Sun H, Damadzic R, Eskay R, Schoor M, Thorsell A, Schwandt ML, Sommer WH, George DT, Parsons LH, Herscovitch P, Hommer D, Heilig M (2011) A genetic determinant of the striatal dopamine response to alcohol in men. Mol Psychiatry 16(8):809–817. doi: 10.1038/mp.2010.56 PubMedCrossRefGoogle Scholar
  154. Ray R, Doyle GA, Crowley JJ, Buono RJ, Oslin DW, Patkar AA, Mannelli P, DeMaria PA Jr, O’Brien CP, Berrettini WH (2005) A functional prodynorphin promoter polymorphism and opioid dependence. Psychiatr Genet 15(4):295–298PubMedCrossRefGoogle Scholar
  155. Reynard LN, Bui C, Syddall CM, Loughlin J (2014) CpG methylation regulates allelic expression of GDF5 by modulating binding of SP1 and SP3 repressor proteins to the osteoarthritis susceptibility SNP rs143383. Hum Genet 133(8):1059–1073. doi: 10.1007/s00439-014-1447-z PubMedPubMedCentralCrossRefGoogle Scholar
  156. Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, Chang HY (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129(7):1311–1323. doi: 10.1016/j.cell.2007.05.022 PubMedPubMedCentralCrossRefGoogle Scholar
  157. Rockman MV, Hahn MW, Soranzo N, Zimprich F, Goldstein DB, Wray GA (2005) Ancient and recent positive selection transformed opioid cis-regulation in humans. PLoS Biol 3(12):e387. doi: 10.1371/journal.pbio.0030387 PubMedPubMedCentralCrossRefGoogle Scholar
  158. Rockowitz S, Lien WH, Pedrosa E, Wei G, Lin M, Zhao K, Lachman HM, Fuchs E, Zheng D (2014) Comparison of REST cistromes across human cell types reveals common and context-specific functions. PLoS Comput Biol 10(6):e1003671. doi: 10.1371/journal.pcbi.1003671 PubMedPubMedCentralCrossRefGoogle Scholar
  159. Rouault M, Nielsen DA, Ho A, Kreek MJ, Yuferov V (2011) Cell-specific effects of variants of the 68-base pair tandem repeat on prodynorphin gene promoter activity. Addict Biol 16(2):334–346. doi: 10.1111/j.1369-1600.2010.00248.x PubMedCrossRefGoogle Scholar
  160. Saify K, Saadat I, Saadat M (2014) Association between VNTR polymorphism in promoter region of prodynorphin (PDYN) gene and heroin dependence. Psychiatry Res 219(3):690–692. doi: 10.1016/j.psychres.2014.06.048 PubMedCrossRefGoogle Scholar
  161. Saigoh K, Mitsui J, Hirano M, Shioyama M, Samukawa M, Ichikawa Y, Goto J, Tsuji S, Kusunoki S (2015) The first Japanese familial case of spinocerebellar ataxia 23 with a novel mutation in the PDYN gene. Parkinsonism Relat Disord 21(3):332–334. doi: 10.1016/j.parkreldis.2014.12.028 PubMedCrossRefGoogle Scholar
  162. Sakamoto N, Ohshima K, Montermini L, Pandolfo M, Wells RD (2001) Sticky DNA, a self-associated complex formed at long GAA*TTC repeats in intron 1 of the frataxin gene, inhibits transcription. J Biol Chem 276(29):27171–27177. doi: 10.1074/jbc.M101879200 PubMedCrossRefGoogle Scholar
  163. Santangelo AM, de Souza FS, Franchini LF, Bumaschny VF, Low MJ, Rubinstein M (2007) Ancient exaptation of a CORE-SINE retroposon into a highly conserved mammalian neuronal enhancer of the proopiomelanocortin gene. PLoS Genet 3(10):1813–1826. doi: 10.1371/journal.pgen.0030166 PubMedCrossRefGoogle Scholar
  164. Schoenherr CJ, Anderson DJ (1995) The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science 267(5202):1360–1363PubMedCrossRefGoogle Scholar
  165. Schwarzer C (2009) 30 years of dynorphins – new insights on their functions in neuropsychiatric diseases. Pharmacol Ther 123(3):353–370. doi: 10.1016/j.pharmthera.2009.05.006 PubMedPubMedCentralCrossRefGoogle Scholar
  166. Seybold VS (2009) The role of peptides in central sensitization. Handb Exp Pharmacol 194:451–491. doi: 10.1007/978-3-540-79090-7_13 PubMedCrossRefGoogle Scholar
  167. Shaham Y, Erb S, Stewart J (2000) Stress-induced relapse to heroin and cocaine seeking in rats: a review. Brain Res Brain Res Rev 33(1):13–33PubMedCrossRefGoogle Scholar
  168. Sharifi N, Ament M, Brennan MB, Hochgeschwender U (1999) Isolation and characterization of the mouse homolog of the preprodynorphin (Pdyn) gene. Neuropeptides 33(3):236–238. doi: 10.1054/npep.1999.0023 PubMedCrossRefGoogle Scholar
  169. Shippenberg TS, Herz A (1986) Differential effects of mu and kappa opioid systems on motivational processes. NIDA Res Monogr 75:563–566PubMedGoogle Scholar
  170. Shippenberg TS, Chefer VI, Zapata A, Heidbreder CA (2001) Modulation of the behavioral and neurochemical effects of psychostimulants by kappa-opioid receptor systems. Ann N Y Acad Sci 937:50–73PubMedCrossRefGoogle Scholar
  171. Shippenberg TS, Zapata A, Chefer VI (2007) Dynorphin and the pathophysiology of drug addiction. Pharmacol Ther 116(2):306–321. doi: 10.1016/j.pharmthera.2007.06.011 PubMedPubMedCentralCrossRefGoogle Scholar
  172. Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, Kashlev M, Oberdoerffer P, Sandberg R, Oberdoerffer S (2011) CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature 479(7371):74–79. doi: 10.1038/nature10442 PubMedCrossRefGoogle Scholar
  173. Siddiqui-Jain A, Grand CL, Bearss DJ, Hurley LH (2002) Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci U S A 99(18):11593–11598. doi: 10.1073/pnas.182256799 PubMedPubMedCentralCrossRefGoogle Scholar
  174. Sigurdsson MI, Smith AV, Bjornsson HT, Jonsson JJ (2009) HapMap methylation-associated SNPs, markers of germline DNA methylation, positively correlate with regional levels of human meiotic recombination. Genome Res 19(4):581–589. doi: 10.1101/gr.086181.108 PubMedPubMedCentralCrossRefGoogle Scholar
  175. Skofitsch G, Zamir N, Helke CJ, Savitt JM, Jacobowitz DM (1985) Corticotropin releasing factor-like immunoreactivity in sensory ganglia and capsaicin sensitive neurons of the rat central nervous system: colocalization with other neuropeptides. Peptides 6(2):307–318PubMedCrossRefGoogle Scholar
  176. Smith AP, Lee NM (1988) Pharmacology of dynorphin. Annu Rev Pharmacol Toxicol 28:123–140. doi: 10.1146/annurev.pa.28.040188.001011 PubMedCrossRefGoogle Scholar
  177. Stogmann E, Zimprich A, Baumgartner C, Aull-Watschinger S, Hollt V, Zimprich F (2002) A functional polymorphism in the prodynorphin gene promoter is associated with temporal lobe epilepsy. Ann Neurol 51(2):260–263PubMedCrossRefGoogle Scholar
  178. Stoop R (2012) Neuromodulation by oxytocin and vasopressin. Neuron 76(1):142–159. doi: 10.1016/j.neuron.2012.09.025 PubMedCrossRefGoogle Scholar
  179. Symes AJ, Craig RK, Brickell PM (1992) Loss of transcriptional repression contributes to the ectopic expression of the calcitonin/alpha-CGRP gene in a human lung carcinoma cell line. FEBS Lett 306(2–3):229–233PubMedCrossRefGoogle Scholar
  180. Taghert PH, Nitabach MN (2012) Peptide neuromodulation in invertebrate model systems. Neuron 76(1):82–97. doi: 10.1016/j.neuron.2012.08.035 PubMedPubMedCentralCrossRefGoogle Scholar
  181. Tanimoto K, Sugiura A, Omori A, Felsenfeld G, Engel JD, Fukamizu A (2003) Human beta-globin locus control region HS5 contains CTCF- and developmental stage-dependent enhancer-blocking activity in erythroid cells. Mol Cell Biol 23(24):8946–8952PubMedPubMedCentralCrossRefGoogle Scholar
  182. Tan-No K, Cebers G, Yakovleva T, Hoon Goh B, Gileva I, Reznikov K, Aguilar-Santelises M, Hauser KF, Terenius L, Bakalkin G (2001) Cytotoxic effects of dynorphins through nonopioid intracellular mechanisms. Exp Cell Res 269(1):54–63. doi: 10.1006/excr.2001.5309 PubMedCrossRefGoogle Scholar
  183. Tan-No K, Esashi A, Nakagawasai O, Niijima F, Tadano T, Sakurada C, Sakurada T, Bakalkin G, Terenius L, Kisara K (2002) Intrathecally administered big dynorphin, a prodynorphin-derived peptide, produces nociceptive behavior through an N-methyl-D-aspartate receptor mechanism. Brain Res 952(1):7–14PubMedCrossRefGoogle Scholar
  184. Tapia-Ramirez J, Eggen BJ, Peral-Rubio MJ, Toledo-Aral JJ, Mandel G (1997) A single zinc finger motif in the silencing factor REST represses the neural-specific type II sodium channel promoter. Proc Natl Acad Sci U S A 94(4):1177–1182PubMedPubMedCentralCrossRefGoogle Scholar
  185. Taqi MM, Bazov I, Watanabe H, Nyberg F, Yakovleva T, Bakalkin G (2011a) Prodynorphin promoter SNP associated with alcohol dependence forms noncanonical AP-1 binding site that may influence gene expression in human brain. Brain Res 1385:18–25. doi: 10.1016/j.brainres.2011.02.042 PubMedCrossRefGoogle Scholar
  186. Taqi MM, Bazov I, Watanabe H, Sheedy D, Harper C, Alkass K, Druid H, Wentzel P, Nyberg F, Yakovleva T, Bakalkin G (2011b) Prodynorphin CpG-SNPs associated with alcohol dependence: elevated methylation in the brain of human alcoholics. Addict Biol 16(3):499–509. doi: 10.1111/j.1369-1600.2011.00323.x PubMedPubMedCentralCrossRefGoogle Scholar
  187. Taqi MM, Warmlander SK, Yamskova O, Madani F, Bazov I, Luo J, Zubarev R, Verbeek D, Graslund A, Bakalkin G (2012) Conformation effects of CpG methylation on single-stranded DNA oligonucleotides: analysis of the opioid peptide dynorphin-coding sequences. PLoS One 7(6):e39605. doi: 10.1371/journal.pone.0039605 PubMedPubMedCentralCrossRefGoogle Scholar
  188. Telkov M, Geijer T, Terenius L (1998) Human prodynorphin gene generates several tissue-specific transcripts. Brain Res 804(2):284–295PubMedCrossRefGoogle Scholar
  189. Theodosis DT, Montagnese C, Rodriguez F, Vincent JD, Poulain DA (1986) Oxytocin induces morphological plasticity in the adult hypothalamo-neurohypophysial system. Nature 322(6081):738–740. doi: 10.1038/322738a0 PubMedCrossRefGoogle Scholar
  190. Todtenkopf MS, Marcus JF, Portoghese PS, Carlezon WA Jr (2004) Effects of kappa-opioid receptor ligands on intracranial self-stimulation in rats. Psychopharmacology (Berl) 172(4):463–470. doi: 10.1007/s00213-003-1680-y CrossRefGoogle Scholar
  191. Tomso DJ, Bell DA (2003) Sequence context at human single nucleotide polymorphisms: overrepresentation of CpG dinucleotide at polymorphic sites and suppression of variation in CpG islands. J Mol Biol 327(2):303–308PubMedCrossRefGoogle Scholar
  192. Ursini G, Bollati V, Fazio L, Porcelli A, Iacovelli L, Catalani A, Sinibaldi L, Gelao B, Romano R, Rampino A, Taurisano P, Mancini M, Di Giorgio A, Popolizio T, Baccarelli A, De Blasi A, Blasi G, Bertolino A (2011) Stress-related methylation of the catechol-O-methyltransferase Val 158 allele predicts human prefrontal cognition and activity. J Neurosci 31(18):6692–6698. doi: 10.1523/JNEUROSCI.6631-10.2011 PubMedCrossRefGoogle Scholar
  193. van den Pol AN (2012) Neuropeptide transmission in brain circuits. Neuron 76(1):98–115. doi: 10.1016/j.neuron.2012.09.014 PubMedPubMedCentralCrossRefGoogle Scholar
  194. Ventriglia M, Bocchio Chiavetto L, Bonvicini C, Tura GB, Bignotti S, Racagni G, Gennarelli M (2002) Allelic variation in the human prodynorphin gene promoter and schizophrenia. Neuropsychobiology 46(1):17–21PubMedCrossRefGoogle Scholar
  195. Votinov M, Pripfl J, Windischberger C, Kalcher K, Zimprich A, Zimprich F, Moser E, Lamm C, Sailer U (2014) A genetic polymorphism of the endogenous opioid dynorphin modulates monetary reward anticipation in the corticostriatal loop. PLoS One 9(2):e89954. doi: 10.1371/journal.pone.0089954 PubMedPubMedCentralCrossRefGoogle Scholar
  196. Walker BM, Zorrilla EP, Koob GF (2011) Systemic kappa-opioid receptor antagonism by nor-binaltorphimine reduces dependence-induced excessive alcohol self-administration in rats. Addict Biol 16(1):116–119. doi: 10.1111/j.1369-1600.2010.00226.x PubMedPubMedCentralCrossRefGoogle Scholar
  197. Walker BM, Valdez GR, McLaughlin JP, Bakalkin G (2012) Targeting dynorphin/kappa opioid receptor systems to treat alcohol abuse and dependence. Alcohol 46(4):359–370. doi: 10.1016/j.alcohol.2011.10.006 PubMedPubMedCentralCrossRefGoogle Scholar
  198. Wang J, Zhuang J, Iyer S, Lin X, Whitfield TW, Greven MC, Pierce BG, Dong X, Kundaje A, Cheng Y, Rando OJ, Birney E, Myers RM, Noble WS, Snyder M, Weng Z (2012) Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors. Genome Res 22(9):1798–1812. doi: 10.1101/gr.139105.112 PubMedPubMedCentralCrossRefGoogle Scholar
  199. Wee S, Koob GF (2010) The role of the dynorphin-kappa opioid system in the reinforcing effects of drugs of abuse. Psychopharmacology (Berl) 210(2):121–135. doi: 10.1007/s00213-010-1825-8 CrossRefGoogle Scholar
  200. Wei SG, Zhu YS, Lai JH, Xue HX, Chai ZQ, Li SB (2011) Association between heroin dependence and prodynorphin gene polymorphisms. Brain Res Bull 85(3–4):238–242. doi: 10.1016/j.brainresbull.2011.02.010 PubMedCrossRefGoogle Scholar
  201. Wells RD (2007) Non-B DNA conformations, mutagenesis and disease. Trends Biochem Sci 32(6):271–278. doi: 10.1016/j.tibs.2007.04.003 PubMedCrossRefGoogle Scholar
  202. White MK, Johnson EM, Khalili K (2009) Multiple roles for Puralpha in cellular and viral regulation. Cell Cycle 8(3):1–7PubMedPubMedCentralCrossRefGoogle Scholar
  203. Wildner H, Das Gupta R, Brohl D, Heppenstall PA, Zeilhofer HU, Birchmeier C (2013) Genome-wide expression analysis of Ptf1a- and Ascl1-deficient mice reveals new markers for distinct dorsal horn interneuron populations contributing to nociceptive reflex plasticity. J Neurosci 33(17):7299–7307. doi: 10.1523/JNEUROSCI.0491-13.2013 PubMedPubMedCentralCrossRefGoogle Scholar
  204. Williams TJ, LaForge KS, Gordon D, Bart G, Kellogg S, Ott J, Kreek MJ (2007) Prodynorphin gene promoter repeat associated with cocaine/alcohol codependence. Addict Biol 12(3–4):496–502. doi: 10.1111/j.1369-1600.2007.00069.x PubMedCrossRefGoogle Scholar
  205. Wray GA (2007) The evolutionary significance of cis-regulatory mutations. Nat Rev Genet 8(3):206–216. doi: 10.1038/Nrg2063 PubMedCrossRefGoogle Scholar
  206. Wright BE, Schmidt KH, Hunt AT, Lodmell JS, Minnick MF, Reschke DK (2011) The roles of transcription and genotoxins underlying p53 mutagenesis in vivo. Carcinogenesis 32(10):1559–1567. doi: 10.1093/carcin/bgr177 PubMedPubMedCentralCrossRefGoogle Scholar
  207. Xie H, Wang M, Bischof J, Bonaldo Mde F, Soares MB (2009) SNP-based prediction of the human germ cell methylation landscape. Genomics 93(5):434–440. doi: 10.1016/j.ygeno.2009.01.005 PubMedCrossRefGoogle Scholar
  208. Xuei X, Dick D, Flury-Wetherill L, Tian HJ, Agrawal A, Bierut L, Goate A, Bucholz K, Schuckit M, Nurnberger J Jr, Tischfield J, Kuperman S, Porjesz B, Begleiter H, Foroud T, Edenberg HJ (2006) Association of the kappa-opioid system with alcohol dependence. Mol Psychiatry 11(11):1016–1024. doi: 10.1038/sj.mp.4001882 PubMedCrossRefGoogle Scholar
  209. Xuei X, Flury-Wetherill L, Bierut L, Dick D, Nurnberger J Jr, Foroud T, Edenberg HJ (2007) The opioid system in alcohol and drug dependence: family-based association study. Am J Med Genet B Neuropsychiatr Genet 144B(7):877–884. doi: 10.1002/ajmg.b.30531 PubMedCrossRefGoogle Scholar
  210. Yakovleva T, Marinova Z, Kuzmin A, Seidah NG, Haroutunian V, Terenius L, Bakalkin G (2007) Dysregulation of dynorphins in Alzheimer disease. Neurobiol Aging 28(11):1700–1708. doi: 10.1016/j.neurobiolaging.2006.07.002 PubMedCrossRefGoogle Scholar
  211. Yoo AS, Staahl BT, Chen L, Crabtree GR (2009) MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature 460(7255):642–646. doi: 10.1038/nature08139 PubMedPubMedCentralGoogle Scholar
  212. Yuferov V, Zhou Y, LaForge KS, Spangler R, Ho A, Kreek MJ (2001) Elevation of guinea pig brain preprodynorphin mRNA expression and hypothalamic-pituitary-adrenal axis activity by “binge” pattern cocaine administration. Brain Res Bull 55(1):65–70PubMedCrossRefGoogle Scholar
  213. Yuferov V, Ji F, Nielsen DA, Levran O, Ho A, Morgello S, Shi R, Ott J, Kreek MJ (2009) A functional haplotype implicated in vulnerability to develop cocaine dependence is associated with reduced PDYN expression in human brain. Neuropsychopharmacology 34(5):1185–1197. doi: 10.1038/npp.2008.187 PubMedCrossRefGoogle Scholar
  214. Yuferov V, Nielsen DA, Levran O, Randesi M, Hamon S, Ho A, Morgello S, Kreek MJ (2011) Tissue-specific DNA methylation of the human prodynorphin gene in post-mortem brain tissues and PBMCs. Pharmacogenet Genomics 21(4):185–196. doi: 10.1097/FPC.0b013e32833eecbc PubMedPubMedCentralGoogle Scholar
  215. Zachariou V, Bolanos CA, Selley DE, Theobald D, Cassidy MP, Kelz MB, Shaw-Lutchman T, Berton O, Sim-Selley LJ, Dileone RJ, Kumar A, Nestler EJ (2006) An essential role for DeltaFosB in the nucleus accumbens in morphine action. Nat Neurosci 9(2):205–211. doi: 10.1038/nn1636 PubMedCrossRefGoogle Scholar
  216. Zhang S, Tong Y, Tian M, Dehaven RN, Cortesburgos L, Mansson E, Simonin F, Kieffer B, Yu L (1998) Dynorphin A as a potential endogenous ligand for four members of the opioid receptor gene family. J Pharmacol Exp Ther 286(1):136–141PubMedGoogle Scholar
  217. Zhang CS, Tan Z, Lu L, Wu SN, He Y, Gu NF, Feng GY, He L (2004) Polymorphism of Prodynorphin promoter is associated with schizophrenia in Chinese population. Acta Pharmacol Sin 25(8):1022–1026PubMedGoogle Scholar
  218. Zheng D, Zhao K, Mehler MF (2009) Profiling RE1/REST-mediated histone modifications in the human genome. Genome Biol 10(1):R9. doi: 10.1186/gb-2009-10-1-r9 PubMedPubMedCentralCrossRefGoogle Scholar
  219. Zhi D, Aslibekyan S, Irvin MR, Claas SA, Borecki IB, Ordovas JM, Absher DM, Arnett DK (2013) SNPs located at CpG sites modulate genome-epigenome interaction. Epigenetics 8(8):802–806. doi: 10.4161/epi.25501 PubMedPubMedCentralCrossRefGoogle Scholar
  220. Zimprich A, Kraus J, Woltje M, Mayer P, Rauch E, Hollt V (2000) An allelic variation in the human prodynorphin gene promoter alters stimulus-induced expression. J Neurochem 74(2):472–477PubMedCrossRefGoogle Scholar
  221. Zupanc GK (1996) Peptidergic transmission: from morphological correlates to functional implications. Micron 27(1):35–91PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Division of Biological Research on Drug Dependence, Department of Pharmaceutical BiosciencesUppsala UniversityUppsalaSweden

Personalised recommendations