Genomic Regulation of the PACAP Receptor, PAC1, and Implications for Psychiatric Disease

  • Kristina B. Mercer
  • Kerry J. ResslerEmail author
Part of the Epigenetics and Human Health book series (EHH)


Impairment of the hypothalamic-pituitary-adrenal (HPA) axis and related neurological signaling has been attributed to several psychiatric conditions including unipolar and bipolar depression and posttraumatic stress disorder (PTSD). Consequently, irregularities in the mRNA expression or protein levels of neuropeptide hormones and receptors involved in related stress pathways can trigger these neurological disorders. As a critical modulator of the stress and fear pathways in concert with the pituitary adenylate cyclase-activating peptide (PACAP) ligand, the PAC1 receptor (PAC1) has been implicated in risk for PTSD. Genetic variants, epigenetic alterations, and hormone regulation have been attributed to changes in the expression of ADCYAP1R1 which encodes the PAC1 protein. The chapter will focus on a review of PACAP-induced cellular function, localization, and expression of the PAC1 receptor. The goal of this review is to address the effects of altered expression of PAC1 on phenotypic outcomes, particularly those neurological in nature. We also discuss existing and potential mechanisms that can induce changes in ADCYAP1R1 transcript levels, including genetic and epigenetic alterations and hormone regulation.


Epigenetics Gene expression Genetic variants DNA methylation Splice isoforms Estradiol 



Research in the Ressler Lab is supported by the Howard Hughes Medical Institute, NIH (R01MH096764), and by an NIH/NCRR base grant (P51RR000165) to the Yerkes National Primate Research Center.

Potential Conflict of Interest

Dr. Ressler is a founding member of Extinction Pharmaceuticals which exists to develop D-cycloserine for use to augment the effectiveness of psychotherapy. He has patents pending for the use of D-cycloserine and psychotherapy, targeting PACAP for extinction, targeting tachykinin 2 for prevention of fear, and targeting angiotensin to improve extinction of fear. He has received no equity or income from any of these relationships within the last 3 years. He has received funding from NIH, HHMI, NARSAD, and the Burroughs Wellcome Foundation.


  1. Aenlle KK, Kumar A, Cui L et al (2009) Estrogen effects on cognition and hippocampal transcription in middle-aged mice. Neurobiol Aging 30:932–945. doi: 10.1016/j.neurobiolaging.2007.09.004 CrossRefPubMedGoogle Scholar
  2. Agarwal A, Halvorson LM, Legradi G (2005) Pituitary adenylate cyclase-activating polypeptide (PACAP) mimics neuroendocrine and behavioral manifestations of stress: evidence for PKA-mediated expression of the corticotropin-releasing hormone (CRH) gene. Brain Res Mol Brain Res 138:45–57. doi: 10.1016/j.molbrainres.2005.03.016 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Almli LM, Mercer KB, Kerley K et al (2013) ADCYAP1R1 genotype associates with post-traumatic stress symptoms in highly traumatized African-American females. Am J Med Genet B Neuropsychiatr Genet 162B:262–272. doi: 10.1002/ajmg.b.32145 CrossRefPubMedGoogle Scholar
  4. Almli LM, Duncan R, Feng H et al (2014) Correcting systematic inflation in genetic association tests that consider interaction effects: application to a genome-wide association study of posttraumatic stress disorder. JAMA Psychiatry. doi: 10.1001/jamapsychiatry.2014.1339 Google Scholar
  5. Amir-Zilberstein L, Blechman J, Sztainberg Y et al (2012) Homeodomain protein Otp and activity-dependent splicing modulate neuronal adaptation to stress. Neuron 73:279–291. doi: 10.1016/j.neuron.2011.11.019 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Andero R, Ressler KJ (2012) Fear extinction and BDNF: translating animal models of PTSD to the clinic. Genes Brain Behav 11:503–512. doi: 10.1111/j.1601-183X.2012.00801.x CrossRefPubMedPubMedCentralGoogle Scholar
  7. Apostolakis EM, Riherd DN, O’Malley BW (2005) PAC1 receptors mediate pituitary adenylate cyclase-activating polypeptide- and progesterone-facilitated receptivity in female rats. Mol Endocrinol (Baltim Md) 19:2798–2811. doi: 10.1210/me.2004-0387 CrossRefGoogle Scholar
  8. Aran D, Sabato S, Hellman A (2013) DNA methylation of distal regulatory sites characterizes dysregulation of cancer genes. Genome Biol 14:R21. doi: 10.1186/gb-2013-14-3-r21 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Arimura A, Somogyvári-Vigh A, Miyata A et al (1991) Tissue distribution of PACAP as determined by RIA: highly abundant in the rat brain and testes. Endocrinology 129:2787–2789. doi: 10.1210/endo-129-5-2787 CrossRefPubMedGoogle Scholar
  10. Basille M, Gonzalez BJ, Desrues L et al (1995) Pituitary adenylate cyclase-activating polypeptide (PACAP) stimulates adenylyl cyclase and phospholipase C activity in rat cerebellar neuroblasts. J Neurochem 65:1318–1324CrossRefPubMedGoogle Scholar
  11. Blechman J, Levkowitz G (2013) Alternative splicing of the pituitary adenylate cyclase-activating polypeptide receptor PAC1: mechanisms of fine tuning of brain activity. Front Endocrinol 4:55. doi: 10.3389/fendo.2013.00055 CrossRefGoogle Scholar
  12. Boyes J, Bird A (1991) DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell 64:1123–1134CrossRefPubMedGoogle Scholar
  13. Braas KM, Schutz KC, Bond JP et al (2007) Microarray analyses of pituitary adenylate cyclase activating polypeptide (PACAP)-regulated gene targets in sympathetic neurons. Peptides 28:1856–1870. doi: 10.1016/j.peptides.2007.04.004 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bredy TW, Wu H, Crego C et al (2007) Histone modifications around individual BDNF gene promoters in prefrontal cortex are associated with extinction of conditioned fear. Learn Mem 14:268–276. doi: 10.1101/lm.500907 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cauvin A, Robberecht P, De Neef P et al (1991) Properties and distribution of receptors for pituitary adenylate cyclase activating peptide (PACAP) in rat brain and spinal cord. Regul Pept 35:161–173CrossRefPubMedGoogle Scholar
  16. Chang S-C, Xie P, Anton RF et al (2012) No association between ADCYAP1R1 and post-traumatic stress disorder in two independent samples. Mol Psychiatry 17:239–241. doi: 10.1038/mp.2011.118 CrossRefPubMedGoogle Scholar
  17. Chen W, Boutaoui N, Brehm JM et al (2013) ADCYAP1R1 and asthma in Puerto Rican children. Am J Respir Crit Care Med 187:584–588. doi: 10.1164/rccm.201210-1789OC CrossRefPubMedPubMedCentralGoogle Scholar
  18. D’Agata V, Cavallaro S (1998) Functional and molecular expression of PACAP/VIP receptors in the rat retina. Brain Res Mol Brain Res 54:161–164CrossRefPubMedGoogle Scholar
  19. Dautzenberg FM, Mevenkamp G, Wille S, Hauger RL (1999) N-terminal splice variants of the type I PACAP receptor: isolation, characterization and ligand binding/selectivity determinants. J Neuroendocrinol 11:941–949CrossRefPubMedGoogle Scholar
  20. Davis LK, Maltman N, Mosconi MW et al (2012) Rare inherited A2BP1 deletion in a proband with autism and developmental hemiparesis. Am J Med Genet A 158A:1654–1661. doi: 10.1002/ajmg.a.35396 CrossRefPubMedGoogle Scholar
  21. Dickson L, Finlayson K (2009) VPAC and PAC receptors: from ligands to function. Pharmacol Ther 121:294–316. doi: 10.1016/j.pharmthera.2008.11.006 CrossRefPubMedGoogle Scholar
  22. Dore R, Iemolo A, Smith KL et al (2013) CRF mediates the anxiogenic and anti-rewarding, but not the anorectic effects of PACAP. Neuropsychopharmacology 38:2160–2169. doi: 10.1038/npp.2013.113 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Ekblad E (1999) Pharmacological evidence for both neuronal and smooth muscular PAC1 receptors and a VIP-specific receptor in rat colon. Regul Pept 85:87–92CrossRefPubMedGoogle Scholar
  24. Essex MJ, Thomas Boyce W, Hertzman C et al (2013) Epigenetic vestiges of early developmental adversity: childhood stress exposure and DNA methylation in adolescence. Child Dev 84:58–75. doi: 10.1111/j.1467-8624.2011.01641.x CrossRefPubMedGoogle Scholar
  25. Filipsson K, Sundler F, Hannibal J, Ahrén B (1998) PACAP and PACAP receptors in insulin producing tissues: localization and effects. Regul Pept 74:167–175CrossRefPubMedGoogle Scholar
  26. Gaszner B, Kormos V, Kozicz T et al (2012) The behavioral phenotype of pituitary adenylate-cyclase activating polypeptide-deficient mice in anxiety and depression tests is accompanied by blunted c-Fos expression in the bed nucleus of the stria terminalis, central projecting Edinger-Westphal nucleus, ventral lateral septum, and dorsal raphe nucleus. Neuroscience 202:283–299. doi: 10.1016/j.neuroscience.2011.11.046 CrossRefPubMedGoogle Scholar
  27. Glover EM, Mercer KB, Norrholm SD et al (2013) Inhibition of fear is differentially associated with cycling estrogen levels in women. J Psychiatry Neurosci 38:341–348. doi: 10.1503/jpn.120129 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Guffanti G, Galea S, Yan L et al (2013) Genome-wide association study implicates a novel RNA gene, the lincRNA AC068718.1, as a risk factor for post-traumatic stress disorder in women. Psychoneuroendocrinology 38:3029–3038. doi: 10.1016/j.psyneuen.2013.08.014 CrossRefPubMedGoogle Scholar
  29. Hammack SE, May V (2014) Pituitary adenylate cyclase activating polypeptide in stress-related disorders: data convergence from animal and human studies. Biol Psychiatry. doi: 10.1016/j.biopsych.2014.12.003 PubMedGoogle Scholar
  30. Hammack SE, Cheung J, Rhodes KM et al (2009) Chronic stress increases pituitary adenylate cyclase-activating peptide (PACAP) and brain-derived neurotrophic factor (BDNF) mRNA expression in the bed nucleus of the stria terminalis (BNST): roles for PACAP in anxiety-like behavior. Psychoneuroendocrinology 34:833–843. doi: 10.1016/j.psyneuen.2008.12.013 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Harmar AJ (2001) Family-B G-protein-coupled receptors. Genome Biol 2, REVIEWS3013CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hashimoto H, Nogi H, Mori K et al (1996) Distribution of the mRNA for a pituitary adenylate cyclase-activating polypeptide receptor in the rat brain: an in situ hybridization study. J Comp Neurol 371:567–577. doi: 10.1002/(SICI)1096-9861(19960805)371:4<567::AID-CNE6>3.0.CO;2-2 CrossRefPubMedGoogle Scholar
  33. Hashimoto H, Hashimoto R, Shintani N et al (2009) Depression-like behavior in the forced swimming test in PACAP-deficient mice: amelioration by the atypical antipsychotic risperidone. J Neurochem 110:595–602. doi: 10.1111/j.1471-4159.2009.06168.x CrossRefPubMedGoogle Scholar
  34. Hashimoto R, Hashimoto H, Shintani N et al (2007) Pituitary adenylate cyclase-activating polypeptide is associated with schizophrenia. Mol Psychiatry 12:1026–1032. doi:  10.1038/
  35. Hirose M, Hashimoto H, Shintani N et al (2005) Differential expression of mRNAs for PACAP and its receptors during neural differentiation of embryonic stem cells. Regul Pept 126:109–113. doi: 10.1016/j.regpep.2004.08.018 CrossRefPubMedGoogle Scholar
  36. Huang J, Li X, Maguire CA et al (2005) Binding of estrogen receptor beta to estrogen response element in situ is independent of estradiol and impaired by its amino terminus. Mol Endocrinol 19:2696–2712. doi: 10.1210/me.2005-0120 CrossRefPubMedGoogle Scholar
  37. Jovanovic T, Norrholm SD, Davis J et al (2013) PAC1 receptor (ADCYAP1R1) genotype is associated with dark-enhanced startle in children. Mol Psychiatry 18:742–743. doi: 10.1038/mp.2012.98 CrossRefPubMedGoogle Scholar
  38. Jung S, Yi L, Jeong D et al (2011) The role of ADCYAP1, adenylate cyclase activating polypeptide 1, as a methylation biomarker for the early detection of cervical cancer. Oncol Rep 25:245–252PubMedGoogle Scholar
  39. Kato T, Iwamoto K (2014) Comprehensive DNA methylation and hydroxymethylation analysis in the human brain and its implication in mental disorders. Neuropharmacology 80:133–139. doi: 10.1016/j.neuropharm.2013.12.019 CrossRefPubMedGoogle Scholar
  40. Kessler RC, Sonnega A, Bromet E et al (1995) Posttraumatic stress disorder in the National Comorbidity Survey. Arch Gen Psychiatry 52:1048–1060CrossRefPubMedGoogle Scholar
  41. Khare T, Pai S, Koncevicius K et al (2012) 5-hmC in the brain is abundant in synaptic genes and shows differences at the exon-intron boundary. Nat Struct Mol Biol 19:1037–1043. doi: 10.1038/nsmb.2372 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Klengel T, Mehta D, Anacker C et al (2013) Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nat Neurosci 16:33–41. doi: 10.1038/nn.3275 CrossRefPubMedGoogle Scholar
  43. Klengel T, Pape J, Binder EB, Mehta D (2014) The role of DNA methylation in stress-related psychiatric disorders. Neuropharmacology 80:115–132. doi: 10.1016/j.neuropharm.2014.01.013 CrossRefPubMedGoogle Scholar
  44. Kozlenkov A, Roussos P, Timashpolsky A et al (2014) Differences in DNA methylation between human neuronal and glial cells are concentrated in enhancers and non-CpG sites. Nucleic Acids Res 42:109–127. doi: 10.1093/nar/gkt838 CrossRefPubMedGoogle Scholar
  45. Laburthe M, Couvineau A (2002) Molecular pharmacology and structure of VPAC Receptors for VIP and PACAP. Regul Pept 108:165–173CrossRefPubMedGoogle Scholar
  46. Lam HC, Takahashi K, Ghatei MA et al (1990) Binding sites of a novel neuropeptide pituitary-adenylate-cyclase-activating polypeptide in the rat brain and lung. Eur J Biochem 193:725–729CrossRefPubMedGoogle Scholar
  47. Lee EH, Seo SR (2014) Neuroprotective roles of pituitary adenylate cyclase-activating polypeptide in neurodegenerative diseases. BMB Rep 47:369–375. doi: 10.5483/BMBRep.2014.47.7.086 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Lehmann ML, Mustafa T, Eiden AM et al (2013) PACAP-deficient mice show attenuated corticosterone secretion and fail to develop depressive behavior during chronic social defeat stress. Psychoneuroendocrinology 38:702–715. doi: 10.1016/j.psyneuen.2012.09.006 CrossRefPubMedGoogle Scholar
  49. Le-Niculescu H, Patel SD, Bhat M et al (2009) Convergent functional genomics of genome-wide association data for bipolar disorder: comprehensive identification of candidate genes, pathways and mechanisms. Am J Med Genet B Neuropsychiatr Genet 150B:155–181. doi: 10.1002/ajmg.b.30887 CrossRefPubMedGoogle Scholar
  50. Lezak KR, Roelke E, Harris OM et al (2014) Pituitary adenylate cyclase-activating polypeptide (PACAP) in the bed nucleus of the stria terminalis (BNST) increases corticosterone in male and female rats. Psychoneuroendocrinology 45:11–20. doi: 10.1016/j.psyneuen.2014.03.007 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Lutz EM, Ronaldson E, Shaw P et al (2006) Characterization of novel splice variants of the PAC1 receptor in human neuroblastoma cells: consequences for signaling by VIP and PACAP. Mol Cell Neurosci 31:193–209. doi: 10.1016/j.mcn.2005.09.008 CrossRefPubMedGoogle Scholar
  52. Masuo Y, Ohtaki T, Masuda Y et al (1992) Binding sites for pituitary adenylate cyclase activating polypeptide (PACAP): comparison with vasoactive intestinal polypeptide (VIP) binding site localization in rat brain sections. Brain Res 575:113–123CrossRefPubMedGoogle Scholar
  53. Maunakea AK, Nagarajan RP, Bilenky M et al (2010) Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466:253–257. doi: 10.1038/nature09165 CrossRefPubMedPubMedCentralGoogle Scholar
  54. May V, Braas KM (1995) Pituitary adenylate cyclase-activating polypeptide (PACAP) regulation of sympathetic neuron neuropeptide Y and catecholamine expression. J Neurochem 65:978–987CrossRefPubMedGoogle Scholar
  55. May V, Lutz E, MacKenzie C et al (2010) Pituitary adenylate cyclase-activating polypeptide (PACAP)/PAC1HOP1 receptor activation coordinates multiple neurotrophic signaling pathways. J Biol Chem 285:9749–9761. doi: 10.1074/jbc.M109.043117 CrossRefPubMedPubMedCentralGoogle Scholar
  56. McCulloch DA, MacKenzie CJ, Johnson MS et al (2002) Additional signals from VPAC/PAC family receptors. Biochem Soc Trans 30:441–446. doi:10.1042/CrossRefPubMedGoogle Scholar
  57. McGowan PO, Sasaki A, D’Alessio AC et al (2009) Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci 12:342–348. doi: 10.1038/nn.2270 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Mehta D, Klengel T, Conneely KN et al (2013) Childhood maltreatment is associated with distinct genomic and epigenetic profiles in posttraumatic stress disorder. Proc Natl Acad Sci USA 110:8302–8307. doi: 10.1073/pnas.1217750110 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Miyata A, Arimura A, Dahl RR et al (1989) Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun 164:567–574CrossRefPubMedGoogle Scholar
  60. Miyata A, Jiang L, Dahl RD et al (1990) Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38). Biochem Biophys Res Commun 170:643–648CrossRefPubMedGoogle Scholar
  61. Oka H, Jin L, Reubi JC et al (1998) Pituitary adenylate-cyclase-activating polypeptide (PACAP) binding sites and PACAP/vasoactive intestinal polypeptide receptor expression in human pituitary adenomas. Am J Pathol 153:1787–1796. doi: 10.1016/S0002-9440(10)65693-3 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Otto C, Kovalchuk Y, Wolfer DP et al (2001a) Impairment of mossy fiber long-term potentiation and associative learning in pituitary adenylate cyclase activating polypeptide type I receptor-deficient mice. J Neurosci Off J Soc Neurosci 21:5520–5527Google Scholar
  63. Otto C, Martin M, Wolfer DP et al (2001b) Altered emotional behavior in PACAP-type-I-receptor-deficient mice. Brain Res Mol Brain Res 92:78–84CrossRefPubMedGoogle Scholar
  64. Pantaloni C, Brabet P, Bilanges B et al (1996) Alternative splicing in the N-terminal extracellular domain of the pituitary adenylate cyclase-activating polypeptide (PACAP) receptor modulates receptor selectivity and relative potencies of PACAP-27 and PACAP-38 in phospholipase C activation. J Biol Chem 271:22146–22151CrossRefPubMedGoogle Scholar
  65. Pozo D, Delgado M, Martinez C et al (1997) Functional characterization and mRNA expression of pituitary adenylate cyclase activating polypeptide (PACAP) type I receptors in rat peritoneal macrophages. Biochim Biophys Acta 1359:250–262CrossRefPubMedGoogle Scholar
  66. Reglodi D, Kiss P, Lubics A, Tamas A (2011) Review on the protective effects of PACAP in models of neurodegenerative diseases in vitro and in vivo. Curr Pharm Des 17:962–972CrossRefPubMedGoogle Scholar
  67. Ressler KJ, Mercer KB, Bradley B et al (2011) Post-traumatic stress disorder is associated with PACAP and the PAC1 receptor. Nature 470:492–497. doi: 10.1038/nature09856 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Reubi JC (2000) In vitro evaluation of VIP/PACAP receptors in healthy and diseased human tissues: clinical implications. Ann N Y Acad Sci 921:1–25. doi: 10.1111/j.1749-6632.2000.tb06946.x CrossRefPubMedGoogle Scholar
  69. Roman CW, Lezak KR, Hartsock MJ et al (2014) PAC1 receptor antagonism in the bed nucleus of the stria terminalis (BNST) attenuates the endocrine and behavioral consequences of chronic stress. Psychoneuroendocrinology 47:151–165. doi: 10.1016/j.psyneuen.2014.05.014 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Rosenbaum DM, Rasmussen SGF, Kobilka BK (2009) The structure and function of G-protein-coupled receptors. Nature 459:356–363. doi: 10.1038/nature08144 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Rothbaum BO, Kearns MC, Reiser E et al (2014) Early intervention following trauma may mitigate genetic risk for PTSD in civilians: a pilot prospective emergency department study. J Clin Psychiatry 75:1380–1387. doi: 10.4088/JCP.13m08715 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Schübeler D (2015) Function and information content of DNA methylation. Nature 517:321–326. doi: 10.1038/nature14192 CrossRefPubMedGoogle Scholar
  73. Schulz S, Röcken C, Mawrin C et al (2004) Immunocytochemical identification of VPAC1, VPAC2, and PAC1 receptors in normal and neoplastic human tissues with subtype-specific antibodies. Clin Cancer Res 10:8235–8242. doi: 10.1158/1078-0432.CCR-04-0939 CrossRefPubMedGoogle Scholar
  74. Segre GV, Goldring SR (1993) Receptors for secretin, calcitonin, parathyroid hormone (PTH)/PTH-related peptide, vasoactive intestinal peptide, glucagonlike peptide 1, growth hormone-releasing hormone, and glucagon belong to a newly discovered G-protein-linked receptor family. Trends Endocrinol Metab 4:309–314CrossRefPubMedGoogle Scholar
  75. Shen S, Gehlert DR, Collier DA (2013) PACAP and PAC1 receptor in brain development and behavior. Neuropeptides 47:421–430. doi:  10.1016/j.npep.2013.10.005
  76. Sherwood NM, Krueckl SL, McRory JE (2000) The origin and function of the pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon superfamily. Endocr Rev 21:619–670. doi: 10.1210/edrv.21.6.0414 PubMedGoogle Scholar
  77. Shioda S, Shuto Y, Somogyvari-Vigh A et al (1997) Localization and gene expression of the receptor for pituitary adenylate cyclase-activating polypeptide in the rat brain. Neurosci Res 28:345–354CrossRefPubMedGoogle Scholar
  78. Shivers BD, Görcs TJ, Gottschall PE, Arimura A (1991) Two high affinity binding sites for pituitary adenylate cyclase-activating polypeptide have different tissue distributions. Endocrinology 128:3055–3065. doi: 10.1210/endo-128-6-3055 CrossRefPubMedGoogle Scholar
  79. Shneider Y, Shtrauss Y, Yadid G, Pinhasov A (2010) Differential expression of PACAP receptors in postnatal rat brain. Neuropeptides 44:509–514. doi: 10.1016/j.npep.2010.09.001 CrossRefPubMedGoogle Scholar
  80. Spengler D, Waeber C, Pantaloni C et al (1993) Differential signal transduction by five splice variants of the PACAP receptor. Nature 365:170–175. doi: 10.1038/365170a0 CrossRefPubMedGoogle Scholar
  81. Stevens JS, Almli LM, Fani N et al (2014) PACAP receptor gene polymorphism impacts fear responses in the amygdala and hippocampus. Proc Natl Acad Sci USA 111:3158–3163. doi: 10.1073/pnas.1318954111 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Stoffel M, Espinosa R, Trabb JB et al (1994) Human type I pituitary adenylate cyclase activating polypeptide receptor (ADCYAP1R): localization to chromosome band 7p14 and integration into the cytogenetic, physical, and genetic map of chromosome 7. Genomics 23:697–699. doi: 10.1006/geno.1994.1560 CrossRefPubMedGoogle Scholar
  83. Stroth N, Eiden LE (2010) Stress hormone synthesis in mouse hypothalamus and adrenal gland triggered by restraint is dependent on PACAP signaling. Neuroscience 165:1025. doi: 10.1016/j.neuroscience.2009.11.023 CrossRefPubMedGoogle Scholar
  84. Stroth N, Liu Y, Aguilera G, Eiden LE (2011) Pituitary adenylate cyclase-activating polypeptide controls stimulus-transcription coupling in the hypothalamic-pituitary-adrenal axis to mediate sustained hormone secretion during stress. J Neuroendocrinol 23:944–955. doi: 10.1111/j.1365-2826.2011.02202.x CrossRefPubMedPubMedCentralGoogle Scholar
  85. Tahiliani M, Koh KP, Shen Y et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935. doi: 10.1126/science.1170116 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Takuma K, Maeda Y, Ago Y et al (2014) An enriched environment ameliorates memory impairments in PACAP-deficient mice. Behav Brain Res 272:269–278. doi: 10.1016/j.bbr.2014.07.005 CrossRefPubMedGoogle Scholar
  87. Tsukiyama N, Saida Y, Kakuda M et al (2011) PACAP centrally mediates emotional stress-induced corticosterone responses in mice. Stress 14:368–375. doi: 10.3109/10253890.2010.544345 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Uddin M, Chang S-C, Zhang C et al (2013) Adcyap1r1 genotype, posttraumatic stress disorder, and depression among women exposed to childhood maltreatment. Depress Anxiety 30:251–258. doi: 10.1002/da.22037 CrossRefPubMedGoogle Scholar
  89. Ushiyama M, Ikeda R, Sugawara H et al (2007) Differential intracellular signaling through PAC1 isoforms as a result of alternative splicing in the first extracellular domain and the third intracellular loop. Mol Pharmacol 72:103–111. doi: 10.1124/mol.107.035477 CrossRefPubMedGoogle Scholar
  90. Vaudry D, Falluel-Morel A, Bourgault S et al (2009) Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev 61:283–357. doi: 10.1124/pr.109.001370 CrossRefPubMedGoogle Scholar
  91. Vrtačnik P, Ostanek B, Mencej-Bedrač S, Marc J (2014) The many faces of estrogen signaling. Biochem Med 24:329–342. doi:10.11613/BM.2014.035CrossRefGoogle Scholar
  92. Wang T, Pan Q, Lin L et al (2012) Genome-wide DNA hydroxymethylation changes are associated with neurodevelopmental genes in the developing human cerebellum. Hum Mol Genet 21:5500–5510. doi: 10.1093/hmg/dds394 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Wang L, Cao C, Wang R et al (2013) PAC1 receptor (ADCYAP1R1) genotype is associated with PTSD’s emotional numbing symptoms in Chinese earthquake survivors. J Affect Disord 150:156–159. doi: 10.1016/j.jad.2013.01.010 CrossRefPubMedGoogle Scholar
  94. Yamada K, Nabeshima T (2003) Brain-derived neurotrophic factor/TrkB signaling in memory processes. J Pharmacol Sci 91:267–270CrossRefPubMedGoogle Scholar
  95. Zhou CJ, Kikuyama S, Shibanuma M et al (2000) Cellular distribution of the splice variants of the receptor for pituitary adenylate cyclase-activating polypeptide (PAC(1)-R) in the rat brain by in situ RT-PCR. Brain Res Mol Brain Res 75:150–158CrossRefPubMedGoogle Scholar
  96. Zink M, Otto C, Zörner B et al (2004) Reduced expression of brain-derived neurotrophic factor in mice deficient for pituitary adenylate cyclase activating polypeptide type-I-receptor. Neurosci Lett 360:106–108. doi: 10.1016/j.neulet.2004.01.030 CrossRefPubMedGoogle Scholar
  97. Zlotnick C, Zimmerman M, Wolfsdorf BA, Mattia JI (2001) Gender differences in patients with posttraumatic stress disorder in a general psychiatric practice. Am J Psychiatry 158:1923–1925CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Psychiatry and Behavioral Sciences and Yerkes National Primate Research CenterEmory UniversityAtlantaUSA
  2. 2.McLean Hospital, Harvard Medical SchoolBelmontUSA

Personalised recommendations