Psychosocial Stress and DNA Methylation

  • Eva Unternaehrer
  • Gunther MeinlschmidtEmail author
Part of the Epigenetics and Human Health book series (EHH)


Psychosocial stress has profound effects on physical and mental health. Recent evidence suggests that this association can be epigenetically mediated. Exposure to psychosocial stress, particularly early in life, might trigger alterations in the epigenome, such as changes in DNA methylation. In this chapter we will summarize human epigenetic research assessing DNA methylation changes related to psychosocial stress exposure, with a focus on early life adversities. Various epigenetic studies investigated maternal psychosocial stress or mood disturbances during pregnancy in relation to the offspring’s epigenome at birth or later in life or child maltreatment, adverse socioeconomic conditions, or stressful life events during childhood in relation to DNA methylation, in postmortem brain tissue, peripheral blood, saliva, and buccal epithelial cells, later in life. Although many of these studies indicate that alterations in DNA methylation persist from early life until adolescence or even adulthood, recent evidence also suggests that the human methylome might remain dynamically regulated by psychosocial experiences even beyond childhood. Interestingly, psychosocial stress across different age ranges was linked to changes in DNA methylation of genes implicated in the stress response system, such as the glucocorticoid receptor gene (NR3C1); FK506 binding protein gene (FKBP5); serotonin transporter gene (SLC6A4); genes involved in development, including the brain-derived neurotrophic factor gene (BDNF); parentally imprinted genes; and genes involved in the immune system. We here review selected findings from this rapidly growing research field and discuss limitations as well as potential implications for research and clinical practice.


Acute stress Chronic stress DNA methylation Childhood adversities Epigenetics Prenatal adversities 



The authors want to thank Christoph Unternaehrer for kindly providing the illustrations for the figures. EU and GM receive funding from the Swiss National Science Foundation (to EU: project no. P2BSP1_151913; to GM: project no. 100014_135328), and GM receives funding from the Korea Research Foundation within the Global Research Network Program (project no. 2013S1A2A2035364). The funding sources had no involvement in the writing and the decision to submit the manuscript for publication. GM is a consultant for Janssen Research & Development, LLC.


  1. Alasaari JS, Lagus M, Ollila HM et al (2012) Environmental stress affects DNA methylation of a CpG rich promoter region of serotonin transporter gene in a nurse cohort. PLoS ONE 7:e45813. doi: 10.1371/journal.pone.0045813 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alexander N, Wankerl M, Hennig J et al (2014) DNA methylation profiles within the serotonin transporter gene moderate the association of 5-HTTLPR and cortisol stress reactivity. Transl Psychiatry 4:e443. doi: 10.1038/tp.2014.88 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Andrews J, Ali N, Pruessner JC (2013) Reflections on the interaction of psychogenic stress systems in humans: the stress coherence/compensation model. Psychoneuroendocrinology 38:947–961. doi: 10.1016/j.psyneuen.2013.02.010 PubMedCrossRefGoogle Scholar
  4. Appleton AA, Armstrong DA, Lesseur C et al (2013) Patterning in placental 11-b hydroxysteroid dehydrogenase methylation according to prenatal socioeconomic adversity. PLoS One 8:e74691. doi: 10.1371/journal.pone.0074691 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Appleyard K, Egeland B, van Dulmen MHM, Alan Sroufe L (2005) When more is not better: the role of cumulative risk in child behavior outcomes. J Child Psychol Psychiatry 46:235–245. doi: 10.1111/j.1469-7610.2004.00351.x PubMedCrossRefGoogle Scholar
  6. Baibazarova E, van de Beek C, Cohen-Kettenis PT et al (2013) Influence of prenatal maternal stress, maternal plasma cortisol and cortisol in the amniotic fluid on birth outcomes and child temperament at 3 months. Psychoneuroendocrinology 38:907–915. doi: 10.1016/j.psyneuen.2012.09.015 PubMedCrossRefGoogle Scholar
  7. Barker DJP (1998) Mothers, babies, and health in later life, 2nd edn. Churchill Livingstone, Edinburgh/New YorkGoogle Scholar
  8. Barker DJ (2007) The origins of the developmental origins theory. J Intern Med 261:412–417PubMedCrossRefGoogle Scholar
  9. Beach SRH, Brody GH, Todorov AA et al (2010) Methylation at SLC6A4 is linked to family history of child abuse: an examination of the Iowa Adoptee sample. Am J Med Genet B Neuropsychiatr Genet 153B:710–713. doi: 10.1002/ajmg.b.31028 PubMedPubMedCentralGoogle Scholar
  10. Beach SRH, Brody GH, Todorov AA et al (2011) Methylation at 5HTT mediates the impact of child sex abuse on women’s antisocial behavior: an examination of the Iowa Adoptee sample. Psychosom Med 73:83–87. doi: 10.1097/PSY.0b013e3181fdd074 PubMedCrossRefGoogle Scholar
  11. Beach SRH, Brody GH, Lei MK et al (2013) Impact of child sex abuse on adult psychopathology: a genetically and epigenetically informed investigation. J Fam Psychol. doi: 10.1037/a0031459 PubMedCentralGoogle Scholar
  12. Beach SRH, Dogan MV, Brody GH, Philibert RA (2014) Differential impact of cumulative SES risk on methylation of protein–protein interaction pathways as a function of SLC6A4 genetic variation in African American young adults. Biol Psychol 96:28–34. doi: 10.1016/j.biopsycho.2013.10.006 PubMedCrossRefGoogle Scholar
  13. Bick J, Naumova O, Hunter S et al (2012) Childhood adversity and DNA methylation of genes involved in the hypothalamus–pituitary–adrenal axis and immune system: whole-genome and candidate-gene associations. Dev Psychopathol 24:1417–1425. doi: 10.1017/S0954579412000806 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Binder E, Bradley RG, Liu W et al (2008) Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. JAMA 299:1291–1305. doi: 10.1001/jama.299.11.1291 PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bolten MI, Wurmser H, Buske-Kirschbaum A et al (2011) Cortisol levels in pregnancy as a psychobiological predictor for birth weight. Arch Womens Ment Health 14:33–41. doi: 10.1007/s00737-010-0183-1 PubMedCrossRefGoogle Scholar
  16. Borghol N, Suderman M, McArdle W et al (2012) Associations with early-life socio-economic position in adult DNA methylation. Int J Epidemiol 41:62–74. doi: 10.1093/ije/dyr147 PubMedCrossRefGoogle Scholar
  17. Bowlby J (1969) Attachment and loss. Basic Books, New YorkGoogle Scholar
  18. Braithwaite EC, Kundakovic M, Ramchandani PG et al (2015) Maternal prenatal depressive symptoms predict infant NR3C1 1F and BDNF IV DNA methylation. Epigenetics. doi: 10.1080/15592294.2015.1039221 PubMedPubMedCentralGoogle Scholar
  19. Branchi I, Karpova NN, D’Andrea I et al (2011) Epigenetic modifications induced by early enrichment are associated with changes in timing of induction of BDNF expression. Neurosci Lett 495:168–172. doi: 10.1016/j.neulet.2011.03.038 PubMedCrossRefGoogle Scholar
  20. Brand SR, Engel SM, Canfield RL, Yehuda R (2006) The effect of maternal PTSD following in utero trauma exposure on behavior and temperament in the 9-month-old infant. Ann N Y Acad Sci 1071:454–458. doi: 10.1196/annals.1364.041 PubMedCrossRefGoogle Scholar
  21. Bromer C, Marsit CJ, Armstrong DA et al (2012) Genetic and epigenetic variation of the glucocorticoid receptor (NR3C1) in placenta and infant neurobehavior. Dev Psychobiol. doi: 10.1002/dev.21061 PubMedPubMedCentralGoogle Scholar
  22. Byun H-M, Siegmund KD, Pan F et al (2009) Epigenetic profiling of somatic tissues from human autopsy specimens identifies tissue- and individual-specific DNA methylation patterns. Hum Mol Genet 18:4808–4817. doi: 10.1093/hmg/ddp445 PubMedPubMedCentralCrossRefGoogle Scholar
  23. Caldji C, Hellstrom IC, Zhang T-Y et al (2011) Environmental regulation of the neural epigenome. FEBS Lett 585:2049–2058. doi: 10.1016/j.febslet.2011.03.032 PubMedCrossRefGoogle Scholar
  24. Cameron N, Del Corpo A, Diorio J et al (2008) Maternal programming of sexual behavior and hypothalamic-pituitary-gonadal function in the female rat. PLoS One 3:e2210. doi: 10.1371/journal.pone.0002210 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Cao-Lei L, Massart R, Suderman MJ et al (2014) DNA methylation signatures triggered by prenatal maternal stress exposure to a natural disaster: project ice storm. PLoS One 9, e107653. doi: 10.1371/journal.pone.0107653 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Carr CP, Martins CMSM, Stingel AM et al (2013) The role of early life stress in adult psychiatric disorders: a systematic review according to childhood trauma subtypes. J Nerv Ment Dis 201:1007–1020. doi: 10.1097/NMD.0000000000000049 PubMedCrossRefGoogle Scholar
  27. Chrousos G, Gold P (1992) The concepts of stress and stress system disorders: overview of physical and behavioral homeostasis. JAMA 267:1244–1252. doi: 10.1001/jama.1992.03480090092034 PubMedCrossRefGoogle Scholar
  28. Connelly JJ, Morris JP (2012) DNA methylation of the oxytocin receptor gene predicts neural response to ambiguous social stimuli. Front Hum Neurosci 6:280. doi: 10.3389/fnhum.2012.00280 PubMedPubMedCentralGoogle Scholar
  29. Conradt E, Lester BM, Appleton AA et al (2013) The roles of DNA methylation of NR3C1 and 11β-HSD2 and exposure to maternal mood disorder in utero on newborn neurobehavior. Epigenetics 8:1321–1329. doi: 10.4161/epi.26634 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Dancause KN, Laplante DP, Oremus C et al (2011) Disaster-related prenatal maternal stress influences birth outcomes: project ice storm. Early Hum Dev 87:813–820. doi: 10.1016/j.earlhumdev.2011.06.007 PubMedCrossRefGoogle Scholar
  31. Davies MN, Volta M, Pidsley R et al (2012) Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood. Genome Biol 13:R43. doi: 10.1186/gb-2012-13-6-r43 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Day JJ, Childs D, Guzman-Karlsson MC et al (2013) DNA methylation regulates associative reward learning. Nat Neurosci 16:1445–1452. doi: 10.1038/nn.3504 PubMedPubMedCentralCrossRefGoogle Scholar
  33. De Rooij SR, Costello PM, Veenendaal MVE et al (2012) Associations between DNA methylation of a glucocorticoid receptor promoter and acute stress responses in a large healthy adult population are largely explained by lifestyle and educational differences. Psychoneuroendocrinology 37:782–788. doi: 10.1016/j.psyneuen.2011.09.010 PubMedCrossRefGoogle Scholar
  34. Desplats PA (2015) Perinatal programming of neurodevelopment: epigenetic mechanisms and the prenatal shaping of the brain. In: Antonelli MC (ed) Perinatal programming of neurodevelopment. Springer, New York, pp 335–361Google Scholar
  35. Devlin AM, Brain U, Austin J, Oberlander TF (2010) Prenatal exposure to maternal depressed mood and the MTHFR C677T variant affect SLC6A4 methylation in infants at birth. PLoS One 5, e12201. doi: 10.1371/journal.pone.0012201 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Edelman S, Shalev I, Uzefovsky F et al (2012) Epigenetic and genetic factors predict women’s salivary cortisol following a threat to the social self. PLoS One 7, e48597. doi: 10.1371/journal.pone.0048597 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Engel SM, Berkowitz GS, Wolff MS, Yehuda R (2005) Psychological trauma associated with the World Trade Center attacks and its effect on pregnancy outcome. Paediatr Perinat Epidemiol 19:334–341. doi: 10.1111/j.1365-3016.2005.00676.x PubMedCrossRefGoogle Scholar
  38. Entringer S, Buss C, Wadhwa PD (2010) Prenatal stress and developmental programming of human health and disease risk: concepts and integration of empirical findings. Curr Opin Endocrinol Diabetes Obes 17:507–516. doi: 10.1097/MED.0b013e3283405921 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Essex MJ, Thomas Boyce W, Hertzman C et al (2013) Epigenetic vestiges of early developmental adversity: childhood stress exposure and DNA methylation in adolescence. Child Dev 84:58–75. doi: 10.1111/j.1467-8624.2011.01641.x PubMedCrossRefGoogle Scholar
  40. Falkenberg VR, Whistler T, Murray JR et al (2013) Acute psychosocial stress-mediated changes in the expression and methylation of perforin in chronic fatigue syndrome. Genet Epigenet 5:1–9. doi: 10.4137/GEG.S10944 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Francis D, Diorio J, Liu D, Meaney MJ (1999) Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science 286:1155–1158PubMedCrossRefGoogle Scholar
  42. Frodl T, Szyf M, Carballedo A et al (2015) DNA methylation of the serotonin transporter gene (SLC6A4) is associated with brain function involved in processing emotional stimuli. J Psychiatry Neurosci 40:140180CrossRefGoogle Scholar
  43. Galobardes B, Lynch JW, Smith GD (2004) Childhood socioeconomic circumstances and cause-specific mortality in adulthood: systematic review and interpretation. Epidemiol Rev 26:7–21. doi: 10.1093/epirev/mxh008 PubMedCrossRefGoogle Scholar
  44. Gluckman PD, Hanson MA, Spencer HG (2005) Predictive adaptive responses and human evolution. Trends Ecol Evol 20:527–533. doi: 10.1016/j.tree.2005.08.001 PubMedCrossRefGoogle Scholar
  45. Gluckman PD, Hanson MA, Low FM (2011) The role of developmental plasticity and epigenetics in human health. Birth Defects Res Part C Embryo Today 93:12–18. doi: 10.1002/bdrc.20198 CrossRefGoogle Scholar
  46. Gomez-Pinilla F, Zhuang Y, Feng J et al (2011) Exercise impacts brain-derived neurotrophic factor plasticity by engaging mechanisms of epigenetic regulation. Eur J Neurosci 33:383–390. doi: 10.1111/j.1460-9568.2010.07508.x PubMedCrossRefGoogle Scholar
  47. Green J, McLaughlin K (2010) Childhood adversities and adult psychiatric disorders in the National Comorbidity Survey replication i: associations with first onset of dsm-iv disorders. Arch Gen Psychiatry 67:113–123. doi: 10.1001/archgenpsychiatry.2009.186 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Groleau P, Joober R, Israel M et al (2014) Methylation of the dopamine D2 receptor (DRD2) gene promoter in women with a bulimia-spectrum disorder: associations with borderline personality disorder and exposure to childhood abuse. J Psychiatr Res 48:121–127. doi: 10.1016/j.jpsychires.2013.10.003 PubMedCrossRefGoogle Scholar
  49. Hellhammer DH, Hellhammer J (2008) 2. Neuropattern – a step towards neurobehavioral medicine. In: Hellhammer DH, Hellhammer J (eds) Key issues in mental health. Karger, Basel, pp 11–20Google Scholar
  50. Hompes T, Izzi B, Gellens E et al (2013) Investigating the influence of maternal cortisol and emotional state during pregnancy on the DNA methylation status of the glucocorticoid receptor gene (NR3C1) promoter region in cord blood. J Psychiatr Res 47:880–891. doi: 10.1016/j.jpsychires.2013.03.009 PubMedCrossRefGoogle Scholar
  51. Hussey JM, Chang JJ, Kotch JB (2006) Child maltreatment in the United States: prevalence, risk factors, and adolescent health consequences. Pediatrics 118:933–942. doi: 10.1542/peds.2005-2452 PubMedCrossRefGoogle Scholar
  52. Kang H-J, Kim J-M, Stewart R et al (2013) Association of SLC6A4 methylation with early adversity, characteristics and outcomes in depression. Prog Neuropsychopharmacol Biol Psychiatry 44:23–28. doi: 10.1016/j.pnpbp.2013.01.006 PubMedCrossRefGoogle Scholar
  53. Kessler RC, Davis CG, Kendler KS (1997) Childhood adversity and adult psychiatric disorder in the US National Comorbidity Survey. Psychol Med 27:1101–1119. doi: 10.1017/S0033291797005588 PubMedCrossRefGoogle Scholar
  54. Kessler RC, McLaughlin KA, Green JG et al (2010) Childhood adversities and adult psychopathology in the WHO world mental health surveys. Br J Psychiatry 197:378–385. doi: 10.1192/bjp.bp.110.080499 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kirschbaum C, Pirke KM, Hellhammer DH (1993) The Trier social stress test - a tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology 28:76–81PubMedCrossRefGoogle Scholar
  56. Klengel T, Mehta D, Anacker C et al (2013) Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nat Neurosci 16:33–41. doi: 10.1038/nn.3275 PubMedCrossRefGoogle Scholar
  57. Labonté B, Yerko V, Gross J et al (2012) Differential glucocorticoid receptor exon 1B, 1C, and 1H expression and methylation in suicide completers with a history of childhood abuse. Biol Psychiatry 72:41–48. doi: 10.1016/j.biopsych.2012.01.034 PubMedCrossRefGoogle Scholar
  58. Labonté B, Suderman M, Maussion G et al (2013) Genome-wide methylation changes in the brains of suicide completers. Am J Psychiatry 170:511–520. doi: 10.1176/appi.ajp.2012.12050627 PubMedCrossRefGoogle Scholar
  59. Lam LL, Emberly E, Fraser HB et al (2012) Factors underlying variable DNA methylation in a human community cohort. Proc Natl Acad Sci USA 109:17253–17260. doi: 10.1073/pnas.1121249109 PubMedPubMedCentralCrossRefGoogle Scholar
  60. Le Y, Zhou Y, Iribarren P, Wang J (2004) Chemokines and chemokine receptors: their manifold roles in homeostasis and disease. Cell Mol Immunol 1:95–104PubMedGoogle Scholar
  61. Li J, Wang Z-N, Chen Y-P et al (2012) Late gestational maternal serum cortisol is inversely associated with fetal brain growth. Neurosci Biobehav Rev 36:1085–1092. doi: 10.1016/j.neubiorev.2011.12.006 PubMedCrossRefGoogle Scholar
  62. Liu D, Diorio J, Tannenbaum B et al (1997) Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science 277:1659–1662. doi: 10.1126/science.277.5332.1659 PubMedCrossRefGoogle Scholar
  63. Liu Y, Murphy SK, Murtha AP et al (2012) Depression in pregnancy, infant birth weight and DNA methylation of imprint regulatory elements. Epigenetics 7:735–746. doi: 10.4161/epi.20734 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Lovejoy MC, Graczyk PA, O’Hare E, Neuman G (2000) Maternal depression and parenting behavior: a meta-analytic review. Clin Psychol Rev 20:561–592. doi: 10.1016/S0272-7358(98)00100-7 PubMedCrossRefGoogle Scholar
  65. Lupien SJ, McEwen BS, Gunnar MR, Heim C (2009) Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci 10:434–445. doi: 10.1038/nrn2639 PubMedCrossRefGoogle Scholar
  66. Ma B, Wilker EH, Willis-Owen SAG et al (2014) Predicting DNA methylation level across human tissues. Nucleic Acids Res 42:3515–3528. doi: 10.1093/nar/gkt1380 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Martini J, Knappe S, Beesdo-Baum K et al (2010) Anxiety disorders before birth and self-perceived distress during pregnancy: associations with maternal depression and obstetric, neonatal and early childhood outcomes. Early Hum Dev 86:305–310. doi: 10.1016/j.earlhumdev.2010.04.004 PubMedCrossRefGoogle Scholar
  68. McGowan PO, Sasaki A, Huang TCT et al (2008) Promoter-wide hypermethylation of the ribosomal RNA gene promoter in the suicide brain. PLoS One 3, e2085. doi: 10.1371/journal.pone.0002085 PubMedPubMedCentralCrossRefGoogle Scholar
  69. McGowan PO, Sasaki A, D’Alessio AC et al (2009) Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci 12:342–348. doi: 10.1038/nn.2270 PubMedPubMedCentralCrossRefGoogle Scholar
  70. McGuinness D, McGlynn LM, Johnson PC et al (2012) Socio-economic status is associated with epigenetic differences in the pSoBid cohort. Int J Epidemiol 41:151–160. doi: 10.1093/ije/dyr215 PubMedCrossRefGoogle Scholar
  71. McLaughlin KA, Green JG, Gruber MJ et al (2010) Childhood adversities and adult psychopathology in the National Comorbidity Survey Replication (NCS-R) III: associations with functional impairment related to DSM-IV disorders. Psychol Med 40:847–859. doi: 10.1017/S0033291709991115 PubMedCrossRefGoogle Scholar
  72. Mehta D, Klengel T, Conneely KN et al (2013) Childhood maltreatment is associated with distinct genomic and epigenetic profiles in posttraumatic stress disorder. Proc Natl Acad Sci USA 110:8302–8307. doi: 10.1073/pnas.1217750110 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Meinlschmidt G, Tegethoff M (2015) How life before birth affects human health and what we can do about it. Eur Psychol 20(2):85–89. doi: 10.1027/1016-9040/a000233
  74. Meinlschmidt G, Tegethoff M, Hellhammer D (2009) Stress and the brain-body interface: from peptides to patterns, from bench to bed. Jpn J Stress Sci 24:62–74Google Scholar
  75. Melas PA, Wei Y, Wong CCY et al (2013) Genetic and epigenetic associations of MAOA and NR3C1 with depression and childhood adversities. Int J Neuropsychopharmacol 16:1513–1528. doi: 10.1017/S1461145713000102 PubMedCrossRefGoogle Scholar
  76. Melchior M, Moffitt TE, Milne BJ et al (2007) Why do children from socioeconomically disadvantaged families suffer from poor health when they reach adulthood? A life-course study. Am J Epidemiol 166:966–974. doi: 10.1093/aje/kwm155 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Millan MJ (2013) An epigenetic framework for neurodevelopmental disorders: from pathogenesis to potential therapy. Neuropharmacology 68:2–82. doi: 10.1016/j.neuropharm.2012.11.015 PubMedCrossRefGoogle Scholar
  78. Miller GE, Chen E, Sze J et al (2008) A functional genomic fingerprint of chronic stress in humans: blunted glucocorticoid and increased NF-κB signaling. Biol Psychiatry 64:266–272. doi: 10.1016/j.biopsych.2008.03.017 PubMedPubMedCentralCrossRefGoogle Scholar
  79. Miller GE, Chen E, Fok AK et al (2009) Low early-life social class leaves a biological residue manifested by decreased glucocorticoid and increased proinflammatory signaling. Proc Natl Acad Sci USA 106:14716–14721. doi: 10.1073/pnas.0902971106 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Mulligan CJ, D’Errico NC, Stees J, Hughes DA (2012) Methylation changes at NR3C1 in newborns associate with maternal prenatal stress exposure and newborn birth weight. Epigenetics 7:853–857. doi: 10.4161/epi.21180 PubMedPubMedCentralCrossRefGoogle Scholar
  81. Naumova OY, Lee M, Koposov R et al (2012) Differential patterns of whole-genome DNA methylation in institutionalized children and children raised by their biological parents. Dev Psychopathol 24:143–155. doi: 10.1017/S0954579411000605 PubMedCrossRefGoogle Scholar
  82. Nemoda Z, Massart R, Suderman M et al (2015) Maternal depression is associated with DNA methylation changes in cord blood T lymphocytes and adult hippocampi. Transl Psychiatry 5, e545. doi: 10.1038/tp.2015.32 PubMedPubMedCentralCrossRefGoogle Scholar
  83. Oberlander TF, Weinberg J, Papsdorf M et al (2008) Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics 3:97–106. doi: 10.4161/epi.3.2.6034 PubMedCrossRefGoogle Scholar
  84. Ouellet-Morin I, Wong CCY, Danese A et al (2013) Increased serotonin transporter gene (SERT) DNA methylation is associated with bullying victimization and blunted cortisol response to stress in childhood: a longitudinal study of discordant monozygotic twins. Psychol Med 43:1813–1823. doi: 10.1017/S0033291712002784 PubMedCrossRefGoogle Scholar
  85. Perroud N, Paoloni-Giacobino A, Prada P et al (2011) Increased methylation of glucocorticoid receptor gene (NR3C1) in adults with a history of childhood maltreatment: a link with the severity and type of trauma. Transl Psychiatry 1, e59. doi: 10.1038/tp.2011.60 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Perroud N, Salzmann A, Prada P et al (2013) Response to psychotherapy in borderline personality disorder and methylation status of the BDNF gene. Transl Psychiatry 3, e207. doi: 10.1038/tp.2012.140 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Perroud N, Rutembesa E, Paoloni-Giacobino A et al (2014) The Tutsi genocide and transgenerational transmission of maternal stress: epigenetics and biology of the HPA axis. World J Biol Psychiatry 15:334–345. doi: 10.3109/15622975.2013.866693 PubMedCrossRefGoogle Scholar
  88. Philibert R, Madan A, Andersen A et al (2007) Serotonin transporter mRNA levels are associated with the methylation of an upstream CpG island. Am J Med Genet B Neuropsychiatr Genet 144B:101–105. doi: 10.1002/ajmg.b.30414 PubMedCrossRefGoogle Scholar
  89. Prados J, Stenz L, Courtet P et al (2015) Borderline personality disorder and childhood maltreatment: a genome-wide methylation analysis. Genes Brain Behav. doi: 10.1111/gbb.12197 PubMedGoogle Scholar
  90. Puglia MH, Lillard TS, Morris JP, Connelly JJ (2015) Epigenetic modification of the oxytocin receptor gene influences the perception of anger and fear in the human brain. Proc Natl Acad Sci 112:3308–3313. doi: 10.1073/pnas.1422096112 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Radtke KM, Ruf M, Gunter HM et al (2011) Transgenerational impact of intimate partner violence on methylation in the promoter of the glucocorticoid receptor. Transl Psychiatry 1, e21. doi: 10.1038/tp.2011.21 PubMedPubMedCentralCrossRefGoogle Scholar
  92. Santarpia L, Lippman SL, El-Naggar AK (2012) Targeting the mitogen-activated protein kinase RAS-RAF signaling pathway in cancer therapy. Expert Opin Ther Targets 16:103–119. doi: 10.1517/14728222.2011.645805 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Scher CD, Forde DR, McQuaid JR, Stein MB (2004) Prevalence and demographic correlates of childhood maltreatment in an adult community sample. Child Abuse Negl 28:167–180. doi: 10.1016/j.chiabu.2003.09.012 PubMedCrossRefGoogle Scholar
  94. Schlotz W, Phillips DIW (2009) Fetal origins of mental health: evidence and mechanisms. Brain Behav Immun 23:905–916. doi: 10.1016/j.bbi.2009.02.001 PubMedCrossRefGoogle Scholar
  95. Scott S (2012) Parenting quality and children’s mental health: biological mechanisms and psychological interventions. Curr Opin Psychiatry 25:301–306. doi: 10.1097/YCO.0b013e328354a1c5 PubMedCrossRefGoogle Scholar
  96. Sellström E, Bremberg S (2006) Review article: the significance of neighbourhood context to child and adolescent health and well-being: a systematic review of multilevel studies. Scand J Public Health 34:544–554. doi: 10.1080/14034940600551251 PubMedCrossRefGoogle Scholar
  97. Selye H (1950) Stress and the general adaptation syndrome. Br Med J 1:1383–1392PubMedPubMedCentralCrossRefGoogle Scholar
  98. Steiger H, Labonté B, Groleau P et al (2013) Methylation of the glucocorticoid receptor gene promoter in bulimic women: associations with borderline personality disorder, suicidality, and exposure to childhood abuse. Int J Eat Disord 46:246–255. doi: 10.1002/eat.22113 PubMedCrossRefGoogle Scholar
  99. Suderman M, McGowan PO, Sasaki A et al (2012) Conserved epigenetic sensitivity to early life experience in the rat and human hippocampus. Proc Natl Acad Sci USA 109:17266–17272. doi: 10.1073/pnas.1121260109 PubMedPubMedCentralCrossRefGoogle Scholar
  100. Sweatt JD (2009) Experience-dependent epigenetic modifications in the central nervous system. Biol Psychiatry 65:191–197. doi: 10.1016/j.biopsych.2008.09.002 PubMedCrossRefGoogle Scholar
  101. Tarullo AR, Gunnar MR (2006) Child maltreatment and the developing HPA axis. Horm Behav 50:632–639. doi: 10.1016/j.yhbeh.2006.06.010 PubMedCrossRefGoogle Scholar
  102. Tegethoff M (2009) Fetal origins of pediatric disease, fetoplacental plasticity and intrauterine programming by stress and glucocorticoids. Cuvillier, GöttingenGoogle Scholar
  103. Tegethoff M, Greene N, Olsen J et al (2010) Maternal psychosocial adversity during pregnancy is associated with length of gestation and offspring size at birth: evidence from a population-based cohort study. Psychosom Med 72:419–426. doi: 10.1097/PSY.0b013e3181d2f0b0 PubMedCrossRefGoogle Scholar
  104. Tegethoff M, Greene N, Olsen J et al (2011) Stress during pregnancy and offspring pediatric disease: a national cohort study. Environ Health Perspect 119:1647–1652PubMedPubMedCentralCrossRefGoogle Scholar
  105. Teh AL, Pan H, Chen L et al (2014) The effect of genotype and in utero environment on interindividual variation in neonate DNA methylomes. Genome Res 24:1064–1074. doi: 10.1101/gr.171439.113 PubMedPubMedCentralCrossRefGoogle Scholar
  106. Tehranifar P, Wu H-C, Fan X et al (2013) Early life socioeconomic factors and genomic DNA methylation in mid-life. Epigenetics 8:23–27. doi: 10.4161/epi.22989 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Tyrka AR, Price LH, Marsit C et al (2012) Childhood adversity and epigenetic modulation of the leukocyte glucocorticoid receptor: preliminary findings in healthy adults. PLoS ONE 7, e30148. doi: 10.1371/journal.pone.0030148 PubMedPubMedCentralCrossRefGoogle Scholar
  108. Unternaehrer E, Luers P, Mill J et al (2012) Dynamic changes in DNA methylation of stress-associated genes (OXTR, BDNF) after acute psychosocial stress. Transl Psychiatry 2, e150. doi: 10.1038/tp.2012.77 PubMedPubMedCentralCrossRefGoogle Scholar
  109. Unternaehrer E, Meyer AH, Burkhardt SCA et al (2015) Childhood maternal care is associated with DNA methylation of the genes for brain-derived neurotrophic factor (BDNF) and oxytocin receptor (OXTR) in peripheral blood cells in adult men and women. Stress: The International Journal on the Biology of Stress, 18(4):451–61. doi: 10.3109/10253890.2015.1038992
  110. Ursini G, Bollati V, Fazio L et al (2011) Stress-related methylation of the catechol-o-methyltransferase Val158 allele predicts human prefrontal cognition and activity. J Neurosci 31:6692–6698. doi: 10.1523/JNEUROSCI.6631-10.2011 PubMedCrossRefGoogle Scholar
  111. Vidal AC, Benjamin Neelon SE, Liu Y et al (2014) Maternal stress, preterm birth, and DNA methylation at imprint regulatory sequences in humans. Genet Epigenetics 6:37–44. doi: 10.4137/GEG.S18067 CrossRefGoogle Scholar
  112. Vijayendran M, Beach SRH, Plume JM et al (2012) Effects of genotype and child abuse on DNA methylation and gene expression at the serotonin transporter. Front Psychiatry 3:55. doi: 10.3389/fpsyt.2012.00055 PubMedPubMedCentralCrossRefGoogle Scholar
  113. Wankerl M, Miller R, Kirschbaum C et al (2014) Effects of genetic and early environmental risk factors for depression on serotonin transporter expression and methylation profiles. Transl Psychiatry 4, e402. doi: 10.1038/tp.2014.37 PubMedPubMedCentralCrossRefGoogle Scholar
  114. Weaver ICG, Cervoni N, Champagne FA et al (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7:847–854. doi: 10.1038/nn1276 PubMedCrossRefGoogle Scholar
  115. Yang B-Z, Zhang H, Ge W et al (2013) Child abuse and epigenetic mechanisms of disease risk. Am J Prev Med 44:101–107. doi: 10.1016/j.amepre.2012.10.012 PubMedPubMedCentralCrossRefGoogle Scholar
  116. Yehuda R, Daskalakis NP, Desarnaud F et al (2013) Epigenetic biomarkers as predictors and correlates of symptom improvement following psychotherapy in combat veterans with PTSD. Front Psychiatry 4:118. doi: 10.3389/fpsyt.2013.00118 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Douglas Mental Health University InstituteMcGill UniversityMontrealCanada
  2. 2.Division of Clinical Psychology and Epidemiology, Department of PsychologyUniversity of BaselBaselSwitzerland
  3. 3.Faculty of MedicineRuhr-University BochumBochumGermany

Personalised recommendations