Advertisement

FKBP5 Epialleles

  • Torsten KlengelEmail author
  • Theo Rein
Chapter
Part of the Epigenetics and Human Health book series (EHH)

Abstract

Neuroendocrine regulation of the hypothalamic-pituitary-adrenal (HPA) axis relies on the fine-tuned interplay of a multitude of molecular players. The glucocorticoid receptor (GR) takes the central stage in balancing the activity of the HPA axis through its negative feedback on the peptides corticotrophin-releasing hormone and adrenocorticotropic hormone. The activity of GR, in turn, is also controlled by several cofactors including FK506-binding protein 51 (FKBP51) that emerged as potent inhibitory protein of GR. Polymorphisms of its gene FKBP5 have been consistently linked to stress-related diseases such as major depression post-traumatic stress disorder and other neuropsychiatric phenotypes. In addition, recent studies showed that polymorphisms of FKBP5 could also be linked to epigenetic changes evoked in response to stress exposure, giving rise to “epialleles.” Here we present and discuss FKBP5 as stress reactivity gene describing the molecular genetics and epigenetics of FKBP5 and illustrate FKBP5 as a model at the interface of genetics, epigenetics, and neuroendocrinology.

Keywords

FKBP5 FKBP51 Glucocorticoid receptor DNA methylation Major depression Post-traumatic stress disorder 

References

  1. Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, Gibbs RA, Hurles ME, McVean GA (2010) A map of human genome variation from population-scale sequencing. Nature 467:1061–1073CrossRefPubMedGoogle Scholar
  2. Appel K, Schwahn C, Mahler J, Schulz A, Spitzer C, Fenske K, Stender J, Barnow S, John U, Teumer A, Biffar R, Nauck M, Volzke H, Freyberger HJ, Grabe HJ (2011) Moderation of adult depression by a polymorphism in the FKBP5 gene and childhood physical abuse in the general population. Neuropsychopharmacology 36:1982–1991CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baughman G, Wiederrecht GJ, Chang F, Martin MM, Bourgeois S (1997) Tissue distribution and abundance of human FKBP51, and FK506-binding protein that can mediate calcineurin inhibition535. Biochem Biophys Res Commun 232:437–443CrossRefPubMedGoogle Scholar
  4. Bell JT, Pai AA, Pickrell JK, Gaffney DJ, Pique-Regi R, Degner JF, Gilad Y, Pritchard JK (2011) DNA methylation patterns associate with genetic and gene expression variation in HapMap cell lines. Genome Biol 12:R10CrossRefPubMedPubMedCentralGoogle Scholar
  5. Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447:407–412CrossRefPubMedGoogle Scholar
  6. Bevilacqua L, Carli V, Sarchiapone M, George DK, Goldman D, Roy A, Enoch MA (2012) Interaction between FKBP5 and childhood trauma and risk of aggressive behavior. Arch Gen Psychiatry 69:62–70CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bhutani N, Burns DM, Blau HM (2011) DNA demethylation dynamics. Cell 146:866–872CrossRefPubMedPubMedCentralGoogle Scholar
  8. Binder EB, Salyakina D, Lichtner P, Wochnik GM, Ising M, Putz B, Papiol S, Seaman S, Lucae S, Kohli MA, Nickel T, Kunzel HE, Fuchs B, Majer M, Pfennig A, Kern N, Brunner J, Modell S, Baghai T, Deiml T, Zill P, Bondy B, Rupprecht R, Messer T, Kohnlein O, Dabitz H, Bruckl T, Muller N, Pfister H, Lieb R, Mueller JC, Lohmussaar E, Strom TM, Bettecken T, Meitinger T, Uhr M, Rein T, Holsboer F, Muller-Myhsok B (2004) Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nat Genet 36:1319–1325CrossRefPubMedGoogle Scholar
  9. Binder EB, Bradley RG, Liu W, Epstein MP, Deveau TC, Mercer KB, Tang Y, Gillespie CF, Heim CM, Nemeroff CB, Schwartz AC, Cubells JF, Ressler KJ (2008) Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. JAMA 299:1291–1305CrossRefPubMedPubMedCentralGoogle Scholar
  10. Boscarino JA, Erlich PM, Hoffman SN, Zhang X (2012) Higher FKBP5, COMT, CHRNA5, and CRHR1 allele burdens are associated with PTSD and interact with trauma exposure: implications for neuropsychiatric research and treatment. Neuropsychiatr Dis Treat 8:131–139CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bosker FJ, Hartman CA, Nolte IM, Prins BP, Terpstra P, Posthuma D, van Veen T, Willemsen G, DeRijk RH, de Geus EJ, Hoogendijk WJ, Sullivan PF, Penninx BW, Boomsma DI, Snieder H, Nolen WA (2011) Poor replication of candidate genes for major depressive disorder using genome-wide association data. Mol Psychiatry 16:516–532CrossRefPubMedGoogle Scholar
  12. Brinker A, Scheufler C, Von Der M, Fleckenstein B, Herrmann C, Jung G, Moarefi I, Hartl FU (2002) Ligand discrimination by TPR domains. Relevance and selectivity of EEVD-recognition in Hsp70 x Hop x Hsp90 complexes. J Biol Chem 277:19265–19275CrossRefPubMedGoogle Scholar
  13. Chrousos GP, Renquist D, Brandon D, Eil C, Pugeat M, Vigersky R, Cutler GB Jr, Loriaux DL, Lipsett MB (1982) Glucocorticoid hormone resistance during primate evolution: receptor-mediated mechanisms. Proc Natl Acad Sci USA 79:2036–2040CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chrousos GP, Loriaux DL, Tomita M, Brandon DD, Renquist D, Albertson B, Lipsett MB (1986) The new world primates as animal models of glucocorticoid resistance. Adv Exp Med Biol 196:129–144CrossRefPubMedGoogle Scholar
  15. Cohen H, Liu T, Kozlovsky N, Kaplan Z, Zohar J, Mathe AA (2012) The neuropeptide Y (NPY)-ergic system is associated with behavioral resilience to stress exposure in an animal model of post-traumatic stress disorder. Neuropsychopharmacology 37:350–363CrossRefPubMedGoogle Scholar
  16. Collip D, Myin-Germeys I, Wichers M, Jacobs N, Derom C, Thiery E, Lataster T, Simons C, Delespaul P, Marcelis M, van Os J, van Winkel R (2013) FKBP5 as a possible moderator of the psychosis-inducing effects of childhood trauma. Br J Psychiatry 202:261–268CrossRefPubMedGoogle Scholar
  17. Cowper-Sal R, Zhang X, Wright JB, Bailey SD, Cole MD, Eeckhoute J, Moore JH, Lupien M (2012) Breast cancer risk-associated SNPs modulate the affinity of chromatin for FOXA1 and alter gene expression. Nat Genet 44:1191–1198CrossRefGoogle Scholar
  18. Dackis MN, Rogosch FA, Oshri A, Cicchetti D (2012) The role of limbic system irritability in linking history of childhood maltreatment and psychiatric outcomes in low-income, high-risk women: moderation by FK506 binding protein 5 haplotype. Dev Psychopathol 24:1237–1252CrossRefPubMedPubMedCentralGoogle Scholar
  19. De Kloet ER, Joels M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6:463–475CrossRefPubMedGoogle Scholar
  20. Denny WB, Valentine DL, Reynolds PD, Smith DF, Scammell JG (2000) Squirrel monkey immunophilin FKBP51 is a potent inhibitor of glucocorticoid receptor binding. Endocrinology 141:4107–4113PubMedGoogle Scholar
  21. Dolinoy DC, Das R, Weidman JR, Jirtle RL (2007) Metastable epialleles, imprinting, and the fetal origins of adult diseases. Pediatr Res 61:30R–37RCrossRefPubMedGoogle Scholar
  22. Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB, Zhang X, Wang L, Issner R, Coyne M, Ku M, Durham T, Kellis M, Bernstein BE (2011) Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473:43–49CrossRefPubMedPubMedCentralGoogle Scholar
  23. Fani N, Gutman D, Tone EB, Almli L, Mercer KB, Davis J, Glover E, Jovanovic T, Bradley B, Dinov ID, Zamanyan A, Toga AW, Binder EB, Ressler KJ (2013) FKBP5 and attention bias for threat: associations with hippocampal function and shape. JAMA Psychiatry 70:392–400CrossRefPubMedPubMedCentralGoogle Scholar
  24. Finer S, Holland ML, Nanty L, Rakyan VK (2011) The hunt for the epiallele. Environ Mol Mutagen 52:1–11CrossRefPubMedGoogle Scholar
  25. Fraser HB, Lam LL, Neumann SM, Kobor MS (2012) Population-specificity of human DNA methylation. Genome Biol 13:R8CrossRefPubMedPubMedCentralGoogle Scholar
  26. Frazer KA, Murray SS, Schork NJ, Topol EJ (2009) Human genetic variation and its contribution to complex traits. Nat Rev Genet 10:241–251CrossRefPubMedGoogle Scholar
  27. Gaali S, Kirschner A, Cuboni S, Hartmann J, Kozany C, Balsevich G, Namendorf C, Fernandez-Vizarra P, Sippel C, Zannas AS, Draenert R, Binder EB, Almeida OF, Ruhter G, Uhr M, Schmidt MV, Touma C, Bracher A, Hausch F (2015) Selective inhibitors of the FK506-binding protein 51 by induced fit. Nat Chem Biol 11:33–37CrossRefPubMedGoogle Scholar
  28. Gassen NC, Hartmann J, Zschocke J, Stepan J, Hafner K, Zellner A, Kirmeier T, Kollmannsberger L, Wagner KV, Dedic N, Balsevich G, Deussing JM, Kloiber S, Lucae S, Holsboer F, Eder M, Uhr M, Ising M, Schmidt MV, Rein T (2014) Association of FKBP51 with priming of autophagy pathways and mediation of antidepressant treatment response: evidence in cells, mice, and humans. PLoS Med 11, e1001755CrossRefPubMedPubMedCentralGoogle Scholar
  29. Grad I, Picard D (2007) The glucocorticoid responses are shaped by molecular chaperones. Mol Cell Endocrinol 275:2–12CrossRefPubMedGoogle Scholar
  30. Harrigan MT, Baughman G, Campbell NF, Bourgeois S (1989) Isolation and characterization of glucocorticoid- and cyclic AMP-induced genes in T lymphocytes. Mol Cell Biol 9:3438–3446CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hartmann J, Wagner KV, Liebl C, Scharf SH, Wang XD, Wolf M, Hausch F, Rein T, Schmidt U, Touma C, Cheung-Flynn J, Cox MB, Smith DF, Holsboer F, Muller MB, Schmidt MV (2012) The involvement of FK506-binding protein 51 (FKBP5) in the behavioral and neuroendocrine effects of chronic social defeat stress. Neuropharmacology 62:332–339CrossRefPubMedGoogle Scholar
  32. Heim C, Nemeroff CB (1999) The impact of early adverse experiences on brain systems involved in the pathophysiology of anxiety and affective disorders. Biol Psychiatry 46:1509–1522CrossRefPubMedGoogle Scholar
  33. Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, Barrera LO, Van Calcar S, Qu C, Ching KA, Wang W, Weng Z, Green RD, Crawford GE, Ren B (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39:311–318CrossRefPubMedGoogle Scholar
  34. Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, Harp LF, Ye Z, Lee LK, Stuart RK, Ching CW, Ching KA, Ntosiewicz-Bourget JE, Liu H, Zhang X, Green RD, Lobanenkov VV, Stewart R, Thomson JA, Crawford GE, Kellis M, Ren B (2009) Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459:108–112CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hoeijmakers L, Harbich D, Schmid B, Lucassen PJ, Wagner KV, Schmidt MV, Hartmann J (2014) Depletion of FKBP51 in female mice shapes HPA axis activity. PLoS One 9, e95796CrossRefPubMedPubMedCentralGoogle Scholar
  36. Höhne N, Poidinger M, Merz F, Pfister H, Bruckl T, Zimmermann P, Uhr M, Holsboer F, Ising M (2014) FKBP5 genotype-dependent DNA methylation and mRNA regulation after psychosocial stress in remitted depression and healthy controls. Int J Neuropsychopharmacol 18Google Scholar
  37. Holsboer F (2000) The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology 23:477–501CrossRefPubMedGoogle Scholar
  38. Horsthemke B, Wagstaff J (2008) Mechanisms of imprinting of the Prader-Willi/Angelman region. Am J Med Genet A 146A:2041–2052CrossRefPubMedGoogle Scholar
  39. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–1278CrossRefPubMedPubMedCentralGoogle Scholar
  40. Hubler TR, Scammell JG (2004) Intronic hormone response elements mediate regulation of FKBP5 by progestins and glucocorticoids. Cell Stress Chaperones 9:243–252CrossRefPubMedPubMedCentralGoogle Scholar
  41. Ising M, Depping AM, Siebertz A, Lucae S, Unschuld PG, Kloiber S, Horstmann S, Uhr M, Muller-Myhsok B, Holsboer F (2008) Polymorphisms in the FKBP5 gene region modulate recovery from psychosocial stress in healthy controls. Eur J Neurosci 28:389–398CrossRefPubMedGoogle Scholar
  42. Jinwal UK, Koren J III, Borysov SI, Schmid AB, Abisambra JF, Blair LJ, Johnson AG, Jones JR, Shults CL, O’Leary JC III, Jin Y, Buchner J, Cox MB, Dickey CA (2010) The Hsp90 cochaperone, FKBP51, increases Tau stability and polymerizes microtubules. J Neurosci 30:591–599CrossRefPubMedPubMedCentralGoogle Scholar
  43. Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13:484–492CrossRefPubMedGoogle Scholar
  44. Kang CB, Hong Y, Dhe-Paganon S, Yoon HS (2008) FKBP family proteins: immunophilins with versatile biological functions. Neurosignals 16:318–325CrossRefPubMedGoogle Scholar
  45. Kessler RC, Davis CG, Kendler KS (1997) Childhood adversity and adult psychiatric disorder in the US National Comorbidity Survey. Psychol Med 27:1101–1119CrossRefPubMedGoogle Scholar
  46. Klengel T, Binder EB (2013) Allele-specific epigenetic modification: a molecular mechanism for gene-environment interactions in stress-related psychiatric disorders? Epigenomics 5:109–112CrossRefPubMedGoogle Scholar
  47. Klengel T, Mehta D, Anacker C, Rex-Haffner M, Pruessner JC, Pariante CM, Pace TW, Mercer KB, Mayberg HS, Bradley B, Nemeroff CB, Holsboer F, Heim CM, Ressler KJ, Rein T, Binder EB (2013) Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nat Neurosci 16:33–41CrossRefPubMedGoogle Scholar
  48. Kress C, Thomassin H, Grange T (2006) Active cytosine demethylation triggered by a nuclear receptor involves DNA strand breaks. Proc Natl Acad Sci USA 103:11112–11117CrossRefPubMedPubMedCentralGoogle Scholar
  49. Laird PW (2003) The power and the promise of DNA methylation markers. Nat Rev Cancer 3:253–266CrossRefPubMedGoogle Scholar
  50. Lessard J, Holman EA (2014) FKBP5 and CRHR1 polymorphisms moderate the stress-physical health association in a national sample. Health Psychol 33:1046–1056CrossRefPubMedGoogle Scholar
  51. Lienert F, Wirbelauer C, Som I, Dean A, Mohn F, Schubeler D (2011) Identification of genetic elements that autonomously determine DNA methylation states. Nat Genet 43:1091–1097CrossRefPubMedGoogle Scholar
  52. Luijk MP, Velders FP, Tharner A, van Ijzendoorn MH, Bakermans-Kranenburg MJ, Jaddoe VW, Hofman A, Verhulst FC, Tiemeier H (2010) FKBP5 and resistant attachment predict cortisol reactivity in infants: gene-environment interaction. Psychoneuroendocrinology 35:1454–1461CrossRefPubMedGoogle Scholar
  53. Manuck SB, McCaffery JM (2014) Gene-environment interaction. Annu Rev Psychol 65:41–70CrossRefPubMedGoogle Scholar
  54. McGowan PO, Sasaki A, D’Alessio AC, Dymov S, Labonte B, Szyf M, Turecki G, Meaney MJ (2009) Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci 12:342–348CrossRefPubMedPubMedCentralGoogle Scholar
  55. Meaburn EL, Schalkwyk LC, Mill J (2010) Allele-specific methylation in the human genome: implications for genetic studies of complex disease. Epigenetics 5:578–582CrossRefPubMedPubMedCentralGoogle Scholar
  56. Mehta D, Gonik M, Klengel T, Rex-Haffner M, Menke A, Rubel J, Mercer KB, Putz B, Bradley B, Holsboer F, Ressler KJ, Muller-Myhsok B, Binder EB (2011) Using polymorphisms in FKBP5 to define biologically distinct subtypes of posttraumatic stress disorder: evidence from endocrine and gene expression studies. Arch Gen Psychiatry 68:901–910CrossRefPubMedPubMedCentralGoogle Scholar
  57. Melas PA, Lennartsson A, Vakifahmetoglu-Norberg H, Wei Y, Aberg E, Werme M, Rogdaki M, Mannervik M, Wegener G, Brene S, Mathe AA, Lavebratt C (2013) Allele-specific programming of Npy and epigenetic effects of physical activity in a genetic model of depression. Transl Psychiatry 3, e255CrossRefPubMedPubMedCentralGoogle Scholar
  58. Menke A, Klengel T, Rubel J, Bruckl T, Pfister H, Lucae S, Uhr M, Holsboer F, Binder EB (2013) Genetic variation in FKBP5 associated with the extent of stress hormone dysregulation in major depression. Genes Brain Behav 12:289–296CrossRefPubMedGoogle Scholar
  59. Mickey BJ, Zhou Z, Heitzeg MM, Heinz E, Hodgkinson CA, Hsu DT, Langenecker SA, Love TM, Pecina M, Shafir T, Stohler CS, Goldman D, Zubieta JK (2011) Emotion processing, major depression, and functional genetic variation of neuropeptide Y. Arch Gen Psychiatry 68:158–166CrossRefPubMedPubMedCentralGoogle Scholar
  60. Moisiadis VG, Matthews SG (2014a) Glucocorticoids and fetal programming part 1: outcomes. Nat Rev Endocrinol 10:391–402CrossRefPubMedGoogle Scholar
  61. Moisiadis VG, Matthews SG (2014b) Glucocorticoids and fetal programming part 2: mechanisms. Nat Rev Endocrinol 10:403–411CrossRefPubMedGoogle Scholar
  62. Murgatroyd C, Patchev AV, Wu Y, Micale V, Bockmuhl Y, Fischer D, Holsboer F, Wotjak CT, Almeida OF, Spengler D (2009) Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat Neurosci 12:1559–1566CrossRefPubMedGoogle Scholar
  63. Nakao K, Myers JE, Faber LE (1985) Development of a monoclonal antibody to the rabbit 8.5S uterine progestin receptor. Can J Biochem Cell Biol 63:33–40CrossRefPubMedGoogle Scholar
  64. O’Leary JC III, Dharia S, Blair LJ, Brady S, Johnson AG, Peters M, Cheung-Flynn J, Cox MB, de Erausquin G, Weeber EJ, Jinwal UK, Dickey CA (2011) A new anti-depressive strategy for the elderly: ablation of FKBP5/FKBP51. PLoS One 6:e24840CrossRefPubMedPubMedCentralGoogle Scholar
  65. Paakinaho V, Makkonen H, Jaaskelainen T, Palvimo JJ (2010) Glucocorticoid receptor activates poised FKBP51 locus through long-distance interactions. Mol Endocrinol 24:511–525CrossRefPubMedGoogle Scholar
  66. Paquette AG, Lester BM, Koestler DC, Lesseur C, Armstrong DA, Marsit CJ (2014) Placental FKBP5 genetic and epigenetic variation is associated with infant neurobehavioral outcomes in the RICHS cohort. PLoS One 9, e104913CrossRefPubMedPubMedCentralGoogle Scholar
  67. Pastor WA, Aravind L, Rao A (2013) TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat Rev Mol Cell Biol 14:341–356CrossRefPubMedPubMedCentralGoogle Scholar
  68. Pei H, Li L, Fridley BL, Jenkins GD, Kalari KR, Lingle W, Petersen G, Lou Z, Wang L (2009) FKBP51 affects cancer cell response to chemotherapy by negatively regulating Akt. Cancer Cell 16:259–266CrossRefPubMedPubMedCentralGoogle Scholar
  69. Petronis A (2010) Epigenetics as a unifying principle in the aetiology of complex traits and diseases. Nature 465:721–727CrossRefPubMedGoogle Scholar
  70. Pirkl F, Buchner J (2001) Functional analysis of the Hsp90-associated human peptidyl prolyl cis/trans isomerases FKBP51, FKBP52 and Cyp40. J Mol Biol 308:795–806CrossRefPubMedGoogle Scholar
  71. Provencal N, Binder EB (2014) The effects of early life stress on the epigenome: from the womb to adulthood and even before. Exp Neurol 268:10–20CrossRefPubMedGoogle Scholar
  72. Quinta HR, Maschi D, Gomez-Sanchez C, Piwien-Pilipuk G, Galigniana MD (2010) Subcellular rearrangement of hsp90-binding immunophilins accompanies neuronal differentiation and neurite outgrowth. J Neurochem 115:716–734CrossRefPubMedPubMedCentralGoogle Scholar
  73. Ram O, Goren A, Amit I, Shoresh N, Yosef N, Ernst J, Kellis M, Gymrek M, Issner R, Coyne M, Durham T, Zhang X, Donaghey J, Epstein CB, Regev A, Bernstein BE (2011) Combinatorial patterning of chromatin regulators uncovered by genome-wide location analysis in human cells. Cell 147:1628–1639CrossRefPubMedPubMedCentralGoogle Scholar
  74. Reik W, Walter J (2001) Genomic imprinting: parental influence on the genome. Nat Rev Genet 2:21–32CrossRefPubMedGoogle Scholar
  75. Reynolds PD, Pittler SJ, Scammell JG (1997) Cloning and expression of the glucocorticoid receptor from the squirrel monkey (Saimiri boliviensis boliviensis), a glucocorticoid-resistant primate. J Clin Endocrinol Metab 82:465–472PubMedGoogle Scholar
  76. Reynolds PD, Roveda KP, Tucker JA, Moore CM, Valentine DL, Scammell JG (1998) Glucocorticoid-resistant B-lymphoblast cell line derived from the Bolivian squirrel monkey (Saimiri boliviensis boliviensis). Lab Anim Sci 48:364–370PubMedGoogle Scholar
  77. Reynolds PD, Ruan Y, Smith DF, Scammell JG (1999) Glucocorticoid resistance in the squirrel monkey is associated with overexpression of the immunophilin FKBP51. J Clin Endocrinol Metab 84:663–669PubMedGoogle Scholar
  78. Riggs DL, Roberts PJ, Chirillo SC, Cheung-Flynn J, Prapapanich V, Ratajczak T, Gaber R, Picard D, Smith DF (2003) The Hsp90-binding peptidylprolyl isomerase FKBP52 potentiates glucocorticoid signaling in vivo. EMBO J 22:1158–1167CrossRefPubMedPubMedCentralGoogle Scholar
  79. Robertson KD (2005) DNA methylation and human disease. Nat Rev Genet 6:597–610CrossRefPubMedGoogle Scholar
  80. Roy A, Gorodetsky E, Yuan Q, Goldman D, Enoch MA (2010) Interaction of FKBP5, a stress-related gene, with childhood trauma increases the risk for attempting suicide. Neuropsychopharmacology 35:1674–1683PubMedPubMedCentralGoogle Scholar
  81. Sanchez ER (1990) Hsp56: a novel heat shock protein associated with untransformed steroid receptor complexes348. J Biol Chem 265:22067–22070PubMedGoogle Scholar
  82. Schalkwyk LC, Meaburn EL, Smith R, Dempster EL, Jeffries AR, Davies MN, Plomin R, Mill J (2010) Allelic skewing of DNA methylation is widespread across the genome. Am J Hum Genet 86:196–212CrossRefPubMedPubMedCentralGoogle Scholar
  83. Schübeler D (2015) Function and information content of DNA methylation. Nature 517:321–326CrossRefPubMedGoogle Scholar
  84. Schülke JP, Wochnik GM, Lang-Rollin I, Gassen NC, Knapp RT, Berning B, Yassouridis A, Rein T (2010) Differential impact of tetratricopeptide repeat proteins on the steroid hormone receptors. PLoS One 5, e11717CrossRefPubMedPubMedCentralGoogle Scholar
  85. Sinars CR, Cheung-Flynn J, Rimerman RA, Scammell JG, Smith DF, Clardy J (2003) Structure of the large FK506-binding protein FKBP51, an Hsp90-binding protein and a component of steroid receptor complexes. Proc Natl Acad Sci USA 100:868–873CrossRefPubMedPubMedCentralGoogle Scholar
  86. Smith DF, Faber LE, Toft DO (1990) Purification of unactivated progesterone receptor and identification of novel receptor-associated proteins. J Biol Chem 265:3996–4003PubMedGoogle Scholar
  87. Stadler MB, Murr R, Burger L, Ivanek R, Lienert F, Scholer A, van Nimwegen E, Wirbelauer C, Oakeley EJ, Gaidatzis D, Tiwari VK, Schubeler D (2011) DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480:490–495PubMedGoogle Scholar
  88. Storer CL, Dickey CA, Galigniana MD, Rein T, Cox MB (2011) FKBP51 and FKBP52 in signaling and disease. Trends Endocrinol Metab 22:481–490CrossRefPubMedPubMedCentralGoogle Scholar
  89. Sullivan PF, Daly MJ, O’Donovan M (2012) Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat Rev Genet 13:537–551CrossRefPubMedPubMedCentralGoogle Scholar
  90. Tang WY, Ho SM (2007) Epigenetic reprogramming and imprinting in origins of disease. Rev Endocr Metab Disord 8:173–182CrossRefPubMedPubMedCentralGoogle Scholar
  91. Tatro ET, Everall IP, Kaul M, Achim CL (2009) Modulation of glucocorticoid receptor nuclear translocation in neurons by immunophilins FKBP51 and FKBP52: implications for major depressive disorder. Brain Res 1286:1–12CrossRefPubMedPubMedCentralGoogle Scholar
  92. Thomassin H, Flavin M, Espinas ML, Grange T (2001) Glucocorticoid-induced DNA demethylation and gene memory during development. EMBO J 20:1974–1983CrossRefPubMedPubMedCentralGoogle Scholar
  93. Touma C, Gassen NC, Herrmann L, Cheung-Flynn J, Bull DR, Ionescu IA, Heinzmann JM, Knapman A, Siebertz A, Depping AM, Hartmann J, Hausch F, Schmidt MV, Holsboer F, Ising M, Cox MB, Schmidt U, Rein T (2011) FK506 binding protein 5 shapes stress responsiveness: modulation of neuroendocrine reactivity and coping behavior. Biol Psychiatry 70:928–936CrossRefPubMedGoogle Scholar
  94. Vickers MH (2014) Early life nutrition, epigenetics and programming of later life disease. Nutrients 6:2165–2178CrossRefPubMedPubMedCentralGoogle Scholar
  95. Waterland RA, Jirtle RL (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23:5293–5300CrossRefPubMedPubMedCentralGoogle Scholar
  96. Weaver IC, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl JR, Dymov S, Szyf M, Meaney MJ (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7:847–854CrossRefPubMedGoogle Scholar
  97. White MG, Bogdan R, Fisher PM, Muñoz KE, Williamson DE, Hariri AR (2012) FKBP5 and emotional neglect interact to predict individual differences in amygdala reactivity. Genes Brain Behav 11:869–878CrossRefPubMedGoogle Scholar
  98. Wochnik GM, Young JC, Schmidt U, Holsboer F, Hartl FU, Rein T (2004) Inhibition of GR-mediated transcription by p23 requires interaction with Hsp90. FEBS Lett 560:35–38CrossRefPubMedGoogle Scholar
  99. Wochnik GM, Rüegg J, Abel GA, Schmidt U, Holsboer F, Rein T (2005) FK506-binding proteins 51 and 52 differentially regulate dynein interaction and nuclear translocation of the glucocorticoid receptor in mammalian cells. J Biol Chem 280:4609–4616CrossRefPubMedGoogle Scholar
  100. Xie P, Kranzler HR, Poling J, Stein MB, Anton RF, Farrer LA, Gelernter J (2010) Interaction of FKBP5 with childhood adversity on risk for post-traumatic stress disorder. Neuropsychopharmacology 35:1684–1692PubMedPubMedCentralGoogle Scholar
  101. Zimmermann P, Brückl T, Nocon A, Pfister H, Binder EB, Uhr M, Lieb R, Moffitt TE, Caspi A, Holsboer F, Ising M (2011) Interaction of variants in the FKBP5 gene and adverse life events in predicting the first depression onset: results from a ten-year prospective community study. Am J Psychiatry 168:1107–1116CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.McLean Hospital, Harvard Medical SchoolBelmontUSA
  2. 2.Max Planck Institute of Psychiatry, Translational Research in PsychiatryMunichGermany

Personalised recommendations