Skip to main content

High Gap Maglev Model and Experimental Validation

  • Conference paper
  • First Online:
Sensors and Instrumentation, Volume 5

Abstract

Magnetic Levitation is a powerful physical phenomena which, if correctly controlled, allows frictionless relative motion between two bodies. One of the main features of this system is that it could also provide active damping. However, in order to damp vibrations, a high gap is requested. The analytical model is insufficient to correctly describe the behaviour of such a system, as a lot of secondary effects rise. In order to study this problem in detail, the study of a simple single degree of freedom Maglev is proposed. The paper shows how the analytical model, which is used to build the active control, can influence the behaviour of the real system, and then a way to improve this model is discussed. Relying on FEM analysis, analytical and numerical models are compared, and the analytical one is improved, in order to guarantee a higher performance control. Both analytical and numerical model-based control are tested on an experimental test-bench. Results prove how the numerical model-based control can guarantee much better performance with the same computational costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Muthairi, N.F., Zribi, M.: Sliding mode control of a magnetic levitation system, Math. Probl. Eng. 93–107 (2004)

    Google Scholar 

  2. Bleuler, H.: A survey of magnetic levitation and magnetic bearing types. JSME Int. J. Ser. 3 Vib. Control Eng. Eng. Ind. 35, 335–342 (1992)

    Google Scholar 

  3. Bleuler, H.: Overview on various types of AMBs and their respective potential for applications. In: 14th International Symposium on Magnetic Bearings (2014)

    Google Scholar 

  4. Bleuler, H., et al.: In: Swhweitzer, G., Maslen, E. (eds.). Magnetic Bearings: Theory, Design and Applications to Rotating Machinery. Springer, Berlin (2009)

    Google Scholar 

  5. Bohagen, B.: Magnetic Levitation, Norwegian University of Science and Technology (2003)

    Google Scholar 

  6. Bolzern, P., Scattolini, R., Schiavoni, N.: Fondamenti di controlli automatici. McGraw-Hill, New York, NY (2008)

    Google Scholar 

  7. Braghin, F.: Appunti del corso: Sistemi meccatronici e laboratorio A, Politecnico di Milano (2014)

    Google Scholar 

  8. Chiba, A., Fukao, T., Ichikawa, O., Oshima, M., Takemoto, M., Dorrell, D.: Magnetic Bearings and Bearingless Drives. Elsevier, Amsterdam (2005)

    Google Scholar 

  9. di Milano, P.: Modello e Controllo di Cuscinetti Magnetici Attivi ad Elevato Traferro, Politecnico, University of di Milano. Mechanical Engineering thesis, Mattia Fornoni (2014)

    Google Scholar 

  10. Diana, G., Cheli, F.: Dinamica dei sistemi meccanici, vol. 2. Polipress, Assago (2010)

    Google Scholar 

  11. Earnshaw: On the nature of molecular forces which regulate the constitution of lumiferous ether. Trans. Cambridge Philos. Soc. 7, 97–112 (1842)

    Google Scholar 

  12. Fornoni, M., Castelli-Dezza, F.: Cuscinetti a Levitazione Magnetica (2013)

    Google Scholar 

  13. Gerami, A., Allaire, P., Fittro, R.: Modeling and control of magnetic bearings with nonlinear magnetization. In: 14th International Symposium on Magnetic Bearings (2014)

    Google Scholar 

  14. Gerhard, S.: Active magnetic bearings-chances and limitations. International Centre for Magnetic Bearings, ETH Zurich (2006)

    Google Scholar 

  15. Giorgio, D., Cheli, F.: Dinamica dei sistemi meccanici, Politecnico di Milano, vol. 1 (2010)

    Google Scholar 

  16. Hossain, S.: Design of a Robust Controller for a Magnetic Levitation System, Graduate Student (ECE), Wichita State University

    Google Scholar 

  17. Isidori, A.: Nonlinear Control System. Springer, New York (2000)

    Google Scholar 

  18. Knospe, C.R.: Active magnetic bearings for machining applications. Control Eng. Pract. 307–313 (2007)

    Google Scholar 

  19. Liu, G., Chen, Y.: Levitation force analysis of medium and low speed maglev vehicles. J. Mod. Transp. 93–97 (2012)

    Google Scholar 

  20. Repcic, N., Saric, I., Muminovic, A.: Opportunities to improve production using active magnetic bearing systems. In: 15th International Research/Expert Conference, “Trends in the Development of Machinery and Associated Technology” (2011)

    Google Scholar 

  21. Shameli, E., Behrad Khamesee, M., Paul Huissoon, J.: Real-time control of a magnetic levitation device based on instantaneous modeling of magnetic field. Mechatron. J. 536–544 (2008)

    Google Scholar 

  22. Smirnov, A., Jastrzebski, R., Hynynen, K., Pyrhonen, O.: Comparison of suboptimal control method in magnetic levitation system, pp. 1–10, 2-6 Sept. 2013

    Google Scholar 

  23. Yang, Z.-J., Tateishi, M.: Adaptive robust nonlinear control of a magnetic levitation system. Autom. J. 1125–1131 (2001)

    Google Scholar 

  24. Yin, L., Zhao, L.: Nonlinear control for a large air gap magnetic bearing system. In: Transactions, SMiRT 19, Toronto, August 2007 (2007)

    Google Scholar 

  25. Yoon, S.Y., et al.: Control of Surge in Centrifugal Compressor. Springer, Berlin (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Ghiringhelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Society of Experimental Mechanics, Inc.

About this paper

Cite this paper

Braghin, F., Castelli-Dezza, F., Ghiringhelli, S. (2016). High Gap Maglev Model and Experimental Validation. In: Wee Sit, E. (eds) Sensors and Instrumentation, Volume 5. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-29859-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29859-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29858-0

  • Online ISBN: 978-3-319-29859-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics