Skip to main content

Spectral Analysis

  • Chapter
  • First Online:
Introduction to Time Series and Forecasting

Part of the book series: Springer Texts in Statistics ((STS))

  • 252k Accesses

Abstract

This chapter can be omitted without any loss of continuity. The reader with no background in Fourier or complex analysis should go straight to Chapter 5 The spectral representation of a stationary time series {X t } essentially decomposes {X t } into a sum of sinusoidal components with uncorrelated random coefficients. In conjunction with this decomposition there is a corresponding decomposition into sinusoids of the autocovariance function of {X t }. The spectral decomposition is thus an analogue for stationary processes of the more familiar Fourier representation of deterministic functions. The analysis of stationary processes by means of their spectral representation is often referred to as the “frequency domain analysis” of time series or “spectral analysis.” It is equivalent to “time domain” analysis based on the autocovariance function, but provides an alternative way of viewing the process, which for some applications may be more illuminating. For example, in the design of a structure subject to a randomly fluctuating load, it is important to be aware of the presence in the loading force of a large sinusoidal component with a particular frequency to ensure that this is not a resonant frequency of the structure. The spectral point of view is also particularly useful in the analysis of multivariate stationary processes and in the analysis of linear filters. In Section 4.1 we introduce the spectral density of a stationary process {X t }, which specifies the frequency decomposition of the autocovariance function, and the closely related spectral representation (or frequency decomposition) of the process {X t } itself. Section 4.2 deals with the periodogram, a sample-based function from which we obtain estimators of the spectral density. In Section 4.3 we discuss time-invariant linear filters from a spectral point of view and in Section 4.4 we use the results to derive the spectral density of an arbitrary ARMA process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bloomfield, P. (2000). Fourier analysis of time series: An introduction (2nd ed.). New York: Wiley.

    Google Scholar 

  • Brockwell, P. J., & Davis, R. A. (1991). Time series: Theory and methods (2nd ed.). New York: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brockwell, P.J., Davis, R.A. (2016). Spectral Analysis. In: Introduction to Time Series and Forecasting. Springer Texts in Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-29854-2_4

Download citation

Publish with us

Policies and ethics