Skip to main content

Application of Heat Pipe in Industry

  • Chapter
  • First Online:
Heat Pipe Design and Technology

Abstract

In this chapter we will discuss applications of heat pipes to energy system. We also expand on its applications in space program as well as nuclear industry. We also touch base-up heat pipe applications in electronic manufacturing where the fast central processing units (CPUs) need to be cooled down and how heat pipe can be used as a heat exchanger.

The original version of the book was revised. An erratum can be found at DOI 10.1007/978-3-319-29841-2_7

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-319-29841-2_7

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grover, G. M., Cotter, T. P., & Erickson, G. F. (1964). Structures of very high thermal conductance. Journal of Applied Physics, 35(6), 1990–1991.

    Article  Google Scholar 

  2. Grover, G. M., Bohdansky, J., & Busse, C. A. (1965). The use of a new heat removal system in space thermionic power supplies. European Atomic Energy Community—EURATOM report EUR 2229.

    Google Scholar 

  3. Vasiliev, L. L. (2005). Heat pipes in modern heat exchangers. Applied Thermal Engineering, 25(1), 1–19.

    Article  MathSciNet  Google Scholar 

  4. Mochizuki, M., Nguyen, T., Mashiko, K., Saito, Y., Nguyen, T., & Wuttijumnong, V. (2011). A review of heat pipe applications including new opportunities. Frontiers in Heat Pipes, 2, 013001.

    Article  Google Scholar 

  5. Transterm web site on Cheaper Heating by Recovering. (2002, January 10). Str. Bisericii Romane no. 27, 500068 Brasov, Romania.

    Google Scholar 

  6. Daniel, R. K. (1976). Heat pipe nuclear reactor for space power. Los Alamos Scientific Laboratory, LA-UR-76-998, 11th Inter society Energy Conversion Engineering Conference, Sahara Tahoe, state Line, Nevada, September 12–17, 1976.

    Google Scholar 

  7. Ragheb, M. (2010). Space power reactors. Urbana, IL: University of Illinois.

    Google Scholar 

  8. Ranken, W. A., & Lundberg, L. B. (1978). High temperature heat pipes for terrestrial applications. International Heat Pipe Conference, 3rd, Palo Alto, Calif., May 22–24, 1978, Technical Papers. (A78-35576 14-34) (pp. 283–291). New York: American Institute of Aeronautics and Astronautics. ERDA sponsored research.

    Google Scholar 

  9. Ambrose, J. H., & Holmes, H. R. (Lockheed Missiles and Space Co., Sunnyvale, CA), AB (Lockheed Missiles and Space Co., Sunnyvale, CA). (1991, June). AIAA, Thermophysics Conference, 26th, Honolulu, HI, June 24–26, 1991. p. 7, NASA-supported research.

    Google Scholar 

  10. Uranium Information Centre Serving the web since 1995, now part of Australian Uranium Association.

    Google Scholar 

  11. Most of the information on subject of Nuclear Reactor in Space comes from this site and user should refer to this site for further consultation. http://www.world-nuclear.org/info/inf82.html

  12. Mahefkey, T., & Barthelemy, R. R. (1980). Heat pipe applications for future Air Force spacecraft. American Institute of Aeronautics and Astronautics, Thermophysics Conference, 15th, Snowmass, Colo., July 14–16, 1980, p. 9.

    Google Scholar 

  13. Scott D. Garner P.E., Thermacore Inc., 780 Eden Road, Lancaster PA 17601 USA.

    Google Scholar 

  14. Phillips, W. M., Estabrook, W. C., & Hsieh, T. M. (1976). Nuclear thermionic power system for spacecraft. Pasadena, CA: Jet Propulsion Laboratory.

    Google Scholar 

  15. Shah, R. K., & Giovannelli, A. D. (1988). Heat pipe heat exchanger design theory. In R. K. Shah, E. C. Subbarao, & R. A. Mashelkar (Eds.), Heat transfer equipment design. Washington, DC: Hemisphere Publishing.

    Google Scholar 

  16. Chi, S. W. (1976). Heat pipe theory and practice. New York: Hemisphere Publishing Corporation.

    Google Scholar 

  17. Sharma, A., Tyagi, V. V., Chen, C. R., & Buddhi, D. (2009). Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews, 13(2), 318–345.

    Article  Google Scholar 

  18. Pielichowska, K., & Pielichowski, K. (2014). Phase change materials for thermal energy storage. Progress in Materials Science, 65, 67–123.

    Article  Google Scholar 

  19. Cárdenas, B., & León, N. (2013). High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques. Renewable and Sustainable Energy Reviews, 27, 724–737.

    Article  Google Scholar 

  20. Abhat, A. (1983). Low temperature latent heat thermal energy storage: Heat storage materials. Solar Energy, 30(4), 313–332.

    Article  Google Scholar 

  21. Xu, B., Li, P., & Chan, C. (2015). Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments. Applied Energy, 160, 286–307.

    Article  Google Scholar 

  22. Hoshi, A., Mills, D. R., Bittar, A., & Saitoh, T. S. (2005). Screening of high melting point phase change materials (PCM) in solar thermal concentrating technology based on CLFR. Solar Energy, 79(3), 332–339.

    Article  Google Scholar 

  23. Sciacovelli, A., Gagliardi, F., & Verda, V. (2015). Maximization of performance of a PCM latent heat storage system with innovative fins. Applied Energy, 137, 707–715.

    Article  Google Scholar 

  24. Wang, W.-W., Wang, L.-B., & He, Y.-L. (2016). Parameter effect of a phase change thermal energy storage unit with one shell and one finned tube on its energy efficiency ratio and heat storage rate. Applied Thermal Engineering, 93, 50–60.

    Article  Google Scholar 

  25. Jin, Y., Wan, Q., & Ding, Y. (2015). PCMs heat transfer performance enhancement with expanded graphite and its thermal stability. Procedia Engineering, 102, 1877–1884.

    Article  Google Scholar 

  26. Choi, D. H., Lee, J., Hong, H., & Kang, Y. T. (2014). Thermal conductivity and heat transfer performance enhancement of phase change materials (PCM) containing carbon additives for heat storage application. International Journal of Refrigeration, 42, 112–120.

    Article  Google Scholar 

  27. Calvet, N., Py, X., Olivès, R., Bédécarrats, J.-P., Dumas, J.-P., & Jay, F. (2013). Enhanced performances of macro-encapsulated phase change materials (PCMs) by intensification of the internal effective thermal conductivity. Energy, 55, 956–964.

    Article  Google Scholar 

  28. Zhou, D., & Zhao, C. Y. (2011). Experimental investigations on heat transfer in phase change materials (PCMs) embedded in porous materials. Applied Thermal Engineering, 31(5), 970–977.

    Article  MathSciNet  Google Scholar 

  29. Tiari, S., Qiu, S., Mahdavi, M. (2014). Numerical study of finned heat pipe-assisted latent heat thermal energy storage system. Bulletin of the American Physical Society, 59.

    Google Scholar 

  30. Tiari, M. M., & Qiu, S. (2015). Analysis of a heat pipe-assisted high temperature latent heat energy storage system using a three-dimensional model. First Thermal and Fluids Engineering Summer Conference, New York, USA.

    Google Scholar 

  31. Sharifi, N., Faghri, A., Bergman, T. L., & Andraka, C. E. (2015). Simulation of heat pipe-assisted latent heat thermal energy storage with simultaneous charging and discharging. International Journal of Heat and Mass Transfer, 80, 170–179.

    Article  Google Scholar 

  32. Khalifa, A., Tan, L., Date, A., & Akbarzadeh, A. (2014). A numerical and experimental study of solidification around axially finned heat pipes for high temperature latent heat thermal energy storage units. Applied Thermal Engineering, 70(1), 609–619.

    Article  Google Scholar 

  33. Jung, E. G., & Boo, J. H. (2014). Thermal analytical model of latent thermal storage with heat pipe heat exchanger for concentrated solar power. Solar Energy, 102, 318–332.

    Article  Google Scholar 

  34. Abhat, A. (1982). Performance investigation of a long, slender heat pipe for thermal energy storage applications. Journal of Energy, 6(6), 361–367.

    Article  Google Scholar 

  35. Abhat, A. (1978). Performance studies of a finned heat pipe latent thermal energy storage system. In F. D. Winter & M. Cox (Eds.), Sun: Mankind’s future source of energy (pp. 541–546). New York: Pergamon.

    Chapter  Google Scholar 

  36. Liu, Z., & Ma, C. (2002). Numerical analysis of melting with constant heat flux heating in a thermal energy storage system. Energy Conversion Manage, 43, 2521–38.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zohuri, B. (2016). Application of Heat Pipe in Industry. In: Heat Pipe Design and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-29841-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29841-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29840-5

  • Online ISBN: 978-3-319-29841-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics