Skip to main content

Heat Pipe Theory and Modeling

  • Chapter
  • First Online:
  • 3405 Accesses

Abstract

In this chapter, we will discuss the theory of heat pipe with an approach that our readers have no knowledge of advanced mathematics, physics, and heat pipe. We cover the basic science and technology behind the heat pipe. Whenever we had to refer to basic knowledge of physics, fluid mechanics, and gas dynamics, Wiki site or very basic physics books to give the reader some general idea of specific topics of discussion in the particular section of this chapter along with heat pipe science were utilized. This section covers the fundamental theory behind the heat pipe based on different research papers and books available at present time in order to open a clear path for reader to design and fabricate their required heat pipe within their applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dhananjay Dilip Odhekar Master of Science, August 8, 2005 (B.E. Mech, K.K.W.C.O.E., University of Pune, 1999).

    Google Scholar 

  2. Kishimoto, T. (1994). Flexible-heat-pipe cooling for high-power devices. The International Journal of Microcircuits and Electronic Packaging, 17(2), 98–107.

    Google Scholar 

  3. Lu, S., & Li, H.-S. (1999). Oscillatory mode with extremely high heat transfer rate in a flexible heat pipe. Inter PACK ‘99: Pacific RIM/A SME International Intersociety Electronics Photonic Packaging Conference ‘Advances in Electronic Packaging 1999’, Maui.

    Google Scholar 

  4. Bliss Jr., F. E., Clark Jr., E. G., & Stein, B. (1970). Construction and test of a flexible heat pipe. ASME Conference Paper.

    Google Scholar 

  5. Dunn, P. D., & Reay, D. A. (1994). Heat pipes (4th ed.). New York: Pergamon.

    Google Scholar 

  6. Marcus, B. D. Theory and design of variable conductance heat pipes: Control techniques. Research Report 2, Ames Research Center, National Aeronautics and Space Administration. 13111-6027-R0-00.

    Google Scholar 

  7. Marcus, B. D. (1971). Heat pipes: Control techniques. Report 2, NASA Contract No. NAS2-5503.

    Google Scholar 

  8. Bienert, W. (1969). Heat pipes for temperature control. In Proceedings of the Fourth Intersociety Energy Conversion Conference, Washington, DC (pp. 1033–1041).

    Google Scholar 

  9. Faghri, A. (1995). Heat pipe science and technology. Washington, DC: Taylor & Francis.

    Google Scholar 

  10. Busse, C. A. (1969). Heat pipe thermionic converter research in Europe. Paper #699105, Proc. Fourth Intersociety Energy Conversion Engineering Conf., Washington, DC.

    Google Scholar 

  11. Levy, E. K. (1968). Theoretical investigation of heat pipes operating at low vapor pressure. Journal of Engineering, 90, 547–552.

    Google Scholar 

  12. Wayner Jr., P. C. (1999). Long range intermolecular forces in change-of-phase heat transfer. Proc. 33rd National Heat Transfer Conference, Albuquerque, NM, August 15–17, 1999.

    Google Scholar 

  13. Kemme, J. E. (1978). Ultimate heat-pipe performance. IEEE Transaction on Electron Devices, ED-16, 717–723.

    Google Scholar 

  14. Deverall, J. E., Kemme, J. E., & Florschuetz, L. W. (1970, September). Sonic limitations and startup problems of heat pipes. Los Alamos Scientific Laboratory Report No. LA-4578.

    Google Scholar 

  15. Carey, V. P. (1992). Liquid-vapor phase-change phenomena. Washington, DC: Taylor and Francis.

    Google Scholar 

  16. Spivak, M. (1999). A comprehensive introduction to differential geometry (3rd ed., Vols. 3–4). Publish or Perish Press, ISBN 0-914098-72-1 (Vol. 3), ISBN 0-914098-73-X (Vol. 4).

    Google Scholar 

  17. Peterson, G. P. (1994). An introduction to heat pipes—Modeling, testing and applications. New York: John Wiley & Sons.

    Google Scholar 

  18. Chi, S. W. (1976). Heat pipe theory and practice. New York: McGraw-Hill.

    Google Scholar 

  19. Ferrell, K. J., & Alleavitch, J. (1969). Vaporization heat transfer in capillary wick structures. Preprint No. 6, ASME-AIChE Heat Transfer Conf., Minneapolis, MN.

    Google Scholar 

  20. Eninger, J. E. (1975). Capillary flow through heat pipe wicks. Paper No. 75-661. Washington, DC: AIAA. American Institute of Aeronautics and Astronautics.

    Google Scholar 

  21. Colwell, G. T., & Chang, W. S. (1984). Measurements of the transient behavior of a capillary structure under heavy thermal loading. International Journal of Heat and Mass Transfer, 27(4), 541–551.

    Article  Google Scholar 

  22. Silverstein, C. C. (1992). Design and technology of heat pipes for cooling and heat exchange. Washington, DC: Taylor and Francis.

    Google Scholar 

  23. Busse, C. A. (1973). Theory of the ultimate heat transfer of cylindrical heat pipes. International Journal of Heat and Mass Transfer, 16, 169–186.

    Article  Google Scholar 

  24. Wageman, W. E., & Guevara, F. A. (1960). Fluid flow through a porous channel. Physics of Fluids, 3(6), 878–881.

    Article  MathSciNet  Google Scholar 

  25. Mehta, R. C., & Jayachandran, T. (1996). Numerical analysis of transient two phase flow in heat pipe. Heat and Mass Transfer, 31, 383–386.

    Article  Google Scholar 

  26. Cotter, T. P. (1967). Heat pipe startup dynamic. Proc. SAE Thermionic Conversion Specialist Conference, Palo Alto, California.

    Google Scholar 

  27. Dunn, P. D., & Reay, D. A. (1982). Heat pipes (3rd ed.). New York: Pergamon.

    Google Scholar 

  28. Kemme, J. E. (1967). High performance heat pipe. Proc. 1967 Thermionic Conversion Specialist Conference, Palo Alto, California, October 1967.

    Google Scholar 

  29. Bankston, C. A., & Smith, J. H. (1971). Incompressible laminar vapor flow in cylindrical heat pipes. ASME-71-WA/HT-15. New York: ASME.

    Google Scholar 

  30. Rohani, A. R., & Tien, C. L. (1974). Analysis of the effects of vapor pressure drop on heat pipe performance. International Journal of Heat and Mass Transfer, 17, 61–67.

    Article  MATH  Google Scholar 

  31. Ivanovskii, M. N., Sorokin, V. P., & Yagodkin, I. V. (1982). The physical properties of heat pipes. Oxford: Clarendon.

    Google Scholar 

  32. Vinz, P., & Busse, C. A. Axial heat transfer limits of cylindrical sodium heat pipes between 25 W-cm −2 and 15.5 kW-cm −2. Proc. 1st International Heat Pipe Conference, Stuttgart, Germany, Paper 2-1.

    Google Scholar 

  33. Kroliczek, E. J., & Brennan, P. J. (1983). Axial grooved heat pipes—Cryogenic through ambient. ASME Paper 73-ENAc-48. Presented at the Intersociety Conference on Environmental System, San Diego, California 1983.

    Google Scholar 

  34. Alario, J., Brown, R., & Kosson, R. (1983). Monogroove heat pipe development for the space constructible radiator system. AIAA-83-1431. Presented at the AAIA 18th Thermophysics Conference, Montreal, Canada, June 1983.

    Google Scholar 

  35. ICICLE Feasibility Study, Final Report, NASA Contract NAS 5-21039, RCA-Defense Electronic Product, Camden, New Jersey, NASA-CR-112308.

    Google Scholar 

  36. Shah, R. K., & Giovannelli, A. D. (1988). Heat pipe heat exchanger design theory. In R. K. Shah, E. C. Subbarao, & R. A. Mashelkar (Eds.), Heat transfer equipment design. Washington, DC: Hemisphere Publishing.

    Google Scholar 

  37. Hendrix, W. A. (1989). An analysis of body force effects on transient and steady-state performance of heat pipes. Ph.D. Dissertation, Georgia Institute of Technology.

    Google Scholar 

  38. Cassel, S. D. (1991). The effect of increasing length on the overall conductance and capacitance of long heat pipes. Ph.D. Dissertation, Georgia Institute of Technology.

    Google Scholar 

  39. Wells, K. J., Colwell, G. T., & Berry, J. T. (1985). Two-dimensional numerical simulation of casting solidification with heat pipe controlled boundary conditions. America Foundryman’s Society Transactions, 1, 84–95.

    Google Scholar 

  40. Modlin, J. M., & Colwell, G. T. (1992). Surface cooling of scramjet engine inlets using heat pipe, transpiration, and film cooling. AIAA Journal of Thermophysics and Heat Transfer, 6(2), 500–504.

    Article  Google Scholar 

  41. Ingram, T. J., Haman, L. L., Andes, G. M., Colwell, G. T., & Wepfer, W. J. (1984). Non-metallic heat pipes for flue gas reheat. Report No. 84-JPGC-APC-7. New York: American Society of Mechanical Engineers.

    Google Scholar 

  42. Kays, M. W. (1966). Convective heat and mass transfer. New York: McGraw-Hill.

    Google Scholar 

  43. Marcus, B. D. (1972, April). Theory and design of variable conductance heat pipes. NASA CR-2018.

    Google Scholar 

  44. Brennan, P. J., & Kroliczek, E. J. (1979). Heat pipe design handbook (Vols. I and II). Contract Report No NAS5-23406. Washington, DC: National Aeronautics and Space Administration.

    Google Scholar 

  45. Luikov, A. V. (1972). Heat and mass transfer in capillary-porous bodies. London: Pergamon Press.

    MATH  Google Scholar 

  46. Bird, R., Stewart, W., & Lightfoot, E. (1960). Transport phenomena. New York: John Wiley & Sons.

    Google Scholar 

  47. Von Karman, T. (1935). The problem of resistance in compressible fluids. In Proc. 5th Volta Congr., Rome, November 1935 (pp. 255–264).

    Google Scholar 

  48. Busse, C. A. (1967). Pressure drop in the vapor phase of long heat pipes. In Proceedings of the IEEE International Thermionic Conversion Specialist Conferences. New York: IEEE.

    Google Scholar 

  49. Cotter, T., Grover, G., & Erickson, G. (1964). Structures of very high thermal conductance. Journal of Applied Physics, 35(6), 1990–1991.

    Article  Google Scholar 

  50. Hwang, G. S., Kaviany, M., Anderson, W. G., & Zuo, J. (2007). Modulated wick heat pipe. International Journal of Heat and Mass Transfer, 50, 1420–1434.

    Article  MATH  Google Scholar 

  51. Anderson, W. G., Sarraf, D., & Dussinger, P. M. (2005). Development of a high temperature water heat pipe radiator. In Proceedings of the International Energy Conversion Engineering Conference (IECEC), San Francisco, ISBN 1563477696.

    Google Scholar 

  52. Anderson, W. G., Bonner, R., Hartenstine, J., & Barth, J. (2006). High temperature titanium–water heat pipe radiator. In Space Technology & Applications International Forum (STAIF) Conference (Vol. 813, pp. 91–99). New York: American Institute of Physics.

    Google Scholar 

  53. Alario, J., Haslett, R., & Kosson, R. (1981). The monogroove high performance heat pipe. AIAA-81-1156. New York: American Institute of Aeronautics and Astronautics.

    Google Scholar 

  54. Alario, J., Brown, R., & Kosson, R. (1983). Monogroove heat pipe development for the space constructible radiator system. AIAA-83-1431. Presented at the AIAA 18th Thermophysics Conference, Montreal, Canada, June 1983.

    Google Scholar 

  55. Mai, T. D., Chen, A. L., Sifuentes, R. T., & Cornwell, J. D. (1994, June). Space constructible radiator (Scr) life test heat pipe performance testing and evaluation. Document Number: 941437.

    Google Scholar 

  56. Alario, J., Haslett, R., & Kossor, R. (1981). The monogroove high performance heat pipe. AIAA-81-1156. New York: American Institute of Aeronautics and Astronautics.

    Google Scholar 

  57. Loh, C. K., Harris, E., & Chou, D. J. (2005). Comparative study of heat pipes performances in different orientations. In Semiconductor Thermal Measurement and Management Symposium, 2005 I.E. Twenty First Annual IEEE, 15–17 March 2005 (pp. 191–195).

    Google Scholar 

  58. Riehl, R. R., & dos Santos, N. Loop heat pipe performance enhancement using primary wick with circumferential grooves. National Institute for Space Research, Space Mechanics and Control Division, DMC/Satélite, Av. dos Astronautas 1758, 12227-010 São Jose dos Campos, SP, Brazil.

    Google Scholar 

  59. Hsu, H.-C. (2005, November 10). Wick structure of heat pipe. United States Patent number US 2005/0247436 A1.

    Google Scholar 

  60. Sarraf, D. B., & Anderson, W. G. High-temperature water heat pipes. Advanced Cooling Technologies, Inc. 1046 New Holland Ave. Lancaster, PA 17601.

    Google Scholar 

  61. Gorring, R. L., & Churchill, S. W. (1961). Thermal conductivity of heterogeneous materials. Chemical Engineering Progress, 57(7), 53–59.

    Google Scholar 

  62. Chi, S. W. (1971). Mathematical modeling of high and low temperature heat pipes. George Washington University Report to NASA, Grant No. NGR bzohu00 09-010-070, December 1971.

    Google Scholar 

  63. Marcus, B. D. (1972, April). Theory and design of variable conductance heat pipes. Report No. NASA CR, 2018, National Aeronautics and Space Administration, Washington, DC.

    Google Scholar 

  64. Wallis, G. B. (1969). One-dimensional two-phase flow. New York: McGraw-Hill.

    Google Scholar 

  65. Griffith, P., & Wallis, J. D. (1960). The role of surface conditions in nucleate boiling. ASME-AIChE Heat Transfer Conference, August 1959. Published in Chemical Engineering Progress Symposium Series (Vol. 56). AIChE.

    Google Scholar 

  66. Rohsenow, W. M., & Choi, M. (1961). Heat, mass, and momentum transfer. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  67. Busse, C. A. (1967). Pressure drop in the vapor phase of long heat pipes. Palo Alto, CA: Thermionic Conversion Specialists.

    Google Scholar 

  68. Bystrov, P. I., & Popov, A. N. (1978). International Heat Pipe Conference, 3rd, Palo Alto, Calif., May 22–24, 1978. Technical Papers. (A78-35576 14-34) (pp. 21–26). New York: American Institute of Aeronautics and Astronautics.

    Google Scholar 

  69. Ochterbeck, J. M. (2003). Heat pipes, Chapter 16. In A. Bejan & A. D. Kraus (Eds.), Heat transfer handbook. Hoboken, NJ: John Wiley & Sons.

    Google Scholar 

  70. Phillips, E. C. Low-temperature heat pipe research program. NASA Report No. NASA CR-66792.

    Google Scholar 

  71. Gerrels, E. E., & Larson, J. W. (1971). Brayton cycle vapor chamber (heat pipe) radiator study. NASA CR-1677.

    Google Scholar 

  72. Joy, P. (1970). Optimum cryogenic heat pipe design. ASME Paper 70-HT/SpT-7. New York: American Society of Mechanical Engineers.

    Google Scholar 

  73. Bergles, A. E., & Rohsenow, W. M. (1954). A.S.M.E. Transaction, Journal of Heat Transfer. Transactions of ASME 76, 553–562.

    Google Scholar 

  74. Kemme, J. E. (1966, August). Heat pipe capability experiments. Los Alamos Scientific Laboratory, Report LA-3585.

    Google Scholar 

  75. Van Andel, E. (1969). Heat pipe design theory. Euratom Center for Information and Documentation. Report EUR No. 4210 e, f.

    Google Scholar 

  76. Busse, C. A. (1973). Theory of the ultimate heat transfer limit of cylindrical heat pipes. International Journal of Heat and Mass Transfer, 16, 169–186.

    Article  Google Scholar 

  77. Anon. (1980). Heat pipes—General information on their use, operation and design. Data Item No. 80013, Engineering Sciences Data Unit, London.

    Google Scholar 

  78. Faghri, A. (1974). Continuum transient and frozen funding numbers startup behavior of conventional and gas-loaded heat pipes. Final Report, Department of Mechanical and Materials Engineering Wright State University, Dayton OH, February 1974.

    Google Scholar 

  79. Sockol, P. M., & Forman, R. Re-examination of heat pipe startup. NASA Lewis Research Center, Cleveland, Ohio, Technical Paper, NASA TMX-52924.

    Google Scholar 

  80. Ochterbeck, J. M., & Peterson, G. P. (1993). Freeze/thaw characteristic of a copper-water heat pipe: Effects of non-condensable gas charge. AIAA Journal of Thermophysics and Heat Transfer, 7(1), 127–132.

    Article  Google Scholar 

  81. Antoniuk, D., & Edwards, D. K. (1990). Depriming of arterial gas-controlled heat pipes. Proc. 7th Int’l Heat Pipe Conf., Minsk, USSR, May 1990.

    Google Scholar 

  82. Edwards, D. K., & Marcus, B. D. (1972). Heat and mass transfer in the vicinity of the vapor-gas front in a gas-loaded heat pipe. ASME Journal of Heat Transfer, 94, 155–162.

    Article  Google Scholar 

  83. Merrigan, M. A., Keddy, S. E., & Sena, J. T. (1985). Transient heat pipe investigation for space power systems. Report No. LA-UR-85-3341. Los Alamos, NM: Los Alamos National Laboratory.

    Google Scholar 

  84. Abramenko, A. N., Kanonchik, L. E., & Prokhorov, Y. M. (1986). Startup dynamics of an arterial heat pipe from the frozen or chilled state. Journal Engineering Physics, 51(5), 1283–1288.

    Article  Google Scholar 

  85. Bowman, W. (1990, June). Transient heat-pipe modeling. The frozen start-up problem. Paper No. 90-1773, AIAA/ASME 5th Joint Thermophysics and Heat Transfer Conference, Seattle, WA. Washington, DC: American Institute of Aeronautics and Astronautics.

    Google Scholar 

  86. Jang, J. H., Faghri, A., Chang, W. S., & Mahefkey, E. T. (1990). Mathematical modeling and analysis of heat pipe start-up from frozen sate. ASME Journal of Heat Transfer, 112, 586–594.

    Article  Google Scholar 

  87. Levy, E. K. (1971). Effects of friction on the sonic velocity limit in sodium heat pipes. Proc. 6th AIAA Thermophysics Conf.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zohuri, B. (2016). Heat Pipe Theory and Modeling. In: Heat Pipe Design and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-29841-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29841-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29840-5

  • Online ISBN: 978-3-319-29841-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics