Skip to main content

Basic Principles of Heat Pipes and History

  • Chapter
  • First Online:
Heat Pipe Design and Technology

Abstract

The heat pipe is one of the remarkable achievements of thermal physics and heat transfer engineering in this century because of its unique ability to transfer heat over large distances without considerable losses. The main applications of heat pipes deal with the problems of environmental protection and energy and fuel savings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gaugler, R. S. (1944, June 6). Heat transfer device. U.S. Patent 2,350,348.

    Google Scholar 

  2. Trefethen, L. (1962, February). On the surface tension pumping of liquids or a possible role of the candlewick in space exploration. G. E. Tech. Info., Ser. No. 615 D114.

    Google Scholar 

  3. Wyatt, T. (Johns Hopkins/Applied Physics Lab.). (1963). Satellite temperature stabilization system. Early development of spacecraft heat pipes for temperature stabilization. U.S. Patent No. 3,152,774 (October 13, 1964), application was files June 11, 1963.

    Google Scholar 

  4. Grove, G. M., Cotter, T. P., & Erikson, G. F. (1964). Structures of very high thermal conductivity. Journal of Applied Physics, 35, 1990.

    Article  Google Scholar 

  5. Deverall, J. E., & Kemme, J. E. (1964, October). High thermal conductance devices utilizing the boiling of lithium and silver. Los Alamos Scientific Laboratory report LA-3211.

    Google Scholar 

  6. Grover, G. M., Cotter, T. P., & Erickson, G. F. (1964). Structures of very high thermal conductance. Journal of Applied Physics, 35(6), 1990–1991.

    Article  Google Scholar 

  7. Grover, G. M., Bohdansky, J., & Busse, C. A. (1965). The use of a new heat removal system in space thermionic power supplies. European Atomic Energy Community—EURATOM report EUR 2229.

    Google Scholar 

  8. Cotter, T. P, Deverall, J., Erickson, G. F., Grover, G. M., Keddy, E. S., Kemme, J. E., et al. (1965). Status report on theory and experiments on heat pipes at Los Alamos. Proceedings of the International Conference on Thermionic Power Generation, London, September 1965.

    Google Scholar 

  9. Ranken, W. A., & Kemme, J. E. (1965). Survey of Los Alamos and EURATOM heat pipe investigations. Proc. IEEE Thermionic Conversion Specialist Conf., San Diego, California, October 1965, Los Alamos Scientific Laboratory, report LA-DC-7555.

    Google Scholar 

  10. Kernme, J. E. (1966). Heat pipe capability experiments. Proc. of Joint AEC Sandia Laboratories report SC-M-66-623, 1, October 1966. Expanded version of this paper, Los Alamos Scientific Laboratory report LA-3585-MS (August 1966), also as LA-DC-7938. Revised version of LA-3583-MS, Proc. EEE Thermionic Conversion Specialist Conference, Houston, Texas, (November 1966).

    Google Scholar 

  11. Chi, S. W. (1976). Heat pipe theory and practice. New York: McGraw-Hill.

    Google Scholar 

  12. Dunn, P. D., & Reay, D. A. (1982). Heat pipes (3rd ed.). New York: Pergamon.

    Google Scholar 

  13. Bennett, G. A. (1977, September 1). Conceptual design of a heat pipe radiator. LA-6939-MS Technical Report, Los Alamos Scientific Lab., N.Mex. (USA).

    Google Scholar 

  14. Gerasimov, Y. F., Maidanik, Y. F., & Schegolev, G. T. (1975). Low-temperature heat pipes with separated channels for vapor and liquid. Journal of Engineering Physics, 28(6), 957–960 (in Russian).

    Article  Google Scholar 

  15. Watanabe, K., Kimura, A., Kawabata, K., Yanagida, T., & Yamauchi M. (2001). Development of a variable-conductance heat-pipe for a sodium-sulfur (NAS) battery. Furukawa Review, 20.

    Google Scholar 

  16. Marcus, B. D. (1971). Theory and design of variable conductance heat pipes: Control techniques. Research Report No. 2, July 1971, NASA 13111-6027-R0-00.

    Google Scholar 

  17. Kemme, J. E. (1969, August 1). Heat pipe design considerations. Los Alamos Scientific Laboratory report LA-4221-MS.

    Google Scholar 

  18. Woloshun, K. A., Merrigan, M. A., & Best, E. D. (1988). HTPIPE: A steady-state heat pipe analysis program, A User’s Manual.

    Google Scholar 

  19. Peterson, G. P. (1994). An introduction to heat pipes: Modeling, testing, and applications (pp. 175–210). New York: John Wiley & Sons.

    Google Scholar 

  20. Brennan, P. J., & Kroliczek, E. J. (1979). Heat pipe design handbook. Towson, MD: B & K Engineering, Inc.

    Google Scholar 

  21. MIL-STD-1522A (USAF). (1984, May). Military standard general requirements for safe design and operation of pressurized missile and space systems.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zohuri, B. (2016). Basic Principles of Heat Pipes and History. In: Heat Pipe Design and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-29841-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29841-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29840-5

  • Online ISBN: 978-3-319-29841-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics