Skip to main content

A New Approach to Energy Conversion Technology

  • Chapter
  • First Online:
  • 738 Accesses

Abstract

A nuclear reactor produces and controls the release of energy from splitting the atoms of uranium. Uranium-fueled nuclear power is a clean and efficient way of boiling water to make the steam that drives turbine generators. Except for the reactor itself, a nuclear power station works like most coal- or gas-fired power stations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zohuri, B. (2014). Innovative combined Brayton open cycle systems for the next generation nuclear power plants. PhD Dissertation, Nuclear Engineering Department, University of New Mexico.

    Google Scholar 

  2. Eastop, T. D., & Croft, D. R. (1990). Energy efficiency. New York: Longman.

    Google Scholar 

  3. Zohuri, B., & McDaniel, P. J. (2014). Thermodynamics in nuclear power plant systems. Heidelberg: Springer.

    Google Scholar 

  4. Zohuri, B., & Fathi, N. (2015). Thermal-hydraulic analysis of nuclear reactors. Heidelberg: Springer.

    Google Scholar 

  5. Necati Ozisik, M. (1985). Heat transfer: A basic approach. New York: McGraw-Hill.

    Google Scholar 

  6. Incropera, F. P., & DeWitt, D. P. (1990). Fundamentals of heat and mass transfer (3rd ed., pp. 658–660). New York: Wiley.

    Google Scholar 

  7. Incropera, F. P., DeWitt, D. P., Bergman, T. L., & Lavine, A. S. (2006). Fundamentals of heat and mass transfer (6th ed., pp. 686–688). New York: John Wiley & Sons.

    Google Scholar 

  8. Zohuri, B., McDaniel, P. J., & de Olivera, C. (2014). Air Brayton cycles for nuclear power plants. Submitted for Review.

    Google Scholar 

  9. Zohuri, B., McDaniel, P. J., & de Olivera, C. (2014). A comparison of a recuperated open cycle (Air) Brayton power conversion system with the traditional steam Rankine cycle for the next generation nuclear power plant. ANS Transactions, Reno, Nevada, June, 2014.

    Google Scholar 

  10. McDaniel, P. J., Zohuri, B., & de Olivera, C. (2014). A combined cycle power conversion system for small modular LMFBRs. ANS Transactions, Anaheim, California, November, 2014.

    Google Scholar 

  11. McDaniel, P. J., Zohuri, B., de Oliveira, C., & Cole, J. (2012). A combined cycle power conversion system for the next generation nuclear power plant. ANS Transactions, San Diego, California, November, 2012.

    Google Scholar 

  12. http://energyfromthorium.com/2014/04/04/closed-loop-brayton-cycle-sandia-national-laboratory/

  13. Pasch, J., Conboy, T., Fleming, D., & Rochau, G. (2012). Supercritical CO2 recompression Brayton cycle: Completed assembly description. SANDIA REPORT SAND2012-9546. Unlimited Release Printed, October 2012.

    Google Scholar 

  14. http://www.netl.doe.gov/publications/proceedings/11/utsr/pdf/wed/Wright%20SCO2%20Power%20Cycle%20Summary%20UTSR%202011%20v2a.pdf

  15. Kays, W. M., & London, A. L. (1984). Compact heat exchangers (3rd ed.). New York: McGraw-Hill.

    Google Scholar 

  16. Shah, R. K. (Ed.). (1997). Compact heat exchangers for the process industries. New York: Begell House.

    Google Scholar 

  17. Pansini, A. J., & Smalling, K. D. (1991). Guide to electric power generation. Lilburn, GA: The Fairmont Press.

    Google Scholar 

  18. Peterson, P., Zhao, H., Ballinger, R., Fuller, R., Forsha, M., Nichols, B., Oh, C., & Vernon, M. E. (2004). Next generation nuclear plant power conversion study: Technology options assessment, September 1, 2004.

    Google Scholar 

  19. Jones, C., & Jacob, J., III. (2000). Economic and technical considerations for combined-cycle performance-enhancement options. GER-4200. Schenectady, NY: GE Power Systems.

    Google Scholar 

  20. Langston, L. S., & Opdyke, G. (1997). Introduction to gas turbine for non-engineers. Global Gas Turbine News, 37(2).

    Google Scholar 

  21. Zohuri, B. (2015). Combined cycle driven efficiency for next generation nuclear power plants: An innovative design approach. Heidelberg: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zohuri, B. (2016). A New Approach to Energy Conversion Technology. In: Nuclear Energy for Hydrogen Generation through Intermediate Heat Exchangers. Springer, Cham. https://doi.org/10.1007/978-3-319-29838-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29838-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29837-5

  • Online ISBN: 978-3-319-29838-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics